首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cells are under constant assault by endogenous and environmental DNA damaging agents. DNA double strand breaks (DSBs) sever entire chromosomes and pose a major threat to genome integrity as a result of chromosomal fragment loss or chromosomal rearrangements. Exogenous factors such as ionizing radiation, crosslinking agents, and topoisomerase poisons, contribute to break formation. DSBs are associated with oxidative metabolism, form during the normal S phase, when replication forks collapse and are generated during physiological processes such as V(D)J recombination, yeast mating type switching and meiosis. It is estimated that in mammalian cells ∼10 DSBs per cell are formed daily. If left unrepaired DSBs can lead to cell death or deregulated growth, and cancer development. Cellular response to DSB damage includes mechanisms to halt the progression of the cell cycle and to restore the structure of the broken chromosome. Changes in chromatin adjacent to DNA break sites are instrumental to the DNA damage response (DDR) with two apparent ends: to control compaction and to bind repair and signaling molecules to the lesion. Here, we review the key findings related to each of these functions and examine their cross-talk.  相似文献   

2.
3.
Abstract: DNA ligase activities were measured in neuron-rich and glial nuclear preparations and liver nuclei isolated from adult guinea pigs. The enzymatic properties of cerebral and liver nuclear DNA ligases were studied with isolated nuclei and nuclear extracts. ATP (Km= 46–48 μM) and bivalent cation (Mg2+ or Mn2+) were required for the maximal activities in cerebral and liver nuclei. β-Mercaptoethanol did not affect the activities, but N-ethylmaleimide and p-chloromercuribenzoate completely inhibited the activities. Deoxyadenosine-5′-triphosphate partially inhibited the activities in both cerebral and liver nuclei. An interdependent effect of Na+ and Mg2+ on the enzyme activities was observed. A high concentration (200 mM) of Na+ activated both enzymes and shifted to the acid side the optimal pH for both enzymes. DNA ligase was more easily extracted with lower concentrations of NaCl from liver nuclei than from cerebral nuclei, but the extraction curves from both nuclear species reached a plateau level (92% of total activities of nuclear enzymes) at 200 mM-NaCl. Apparent Km for the substrate [32P]phosphoryl DNA was determined according to a modification of the Michaelis-Menten equation, which was applied for the case where an unknown amount of substrate nicks in chromatin DNA coexisted with the nicks in exogenous substrate DNA. Neuronal and glial nuclear enzymes had similar Km values (about 20 μg of [32P]phosphoryl DNA/ml), but the liver nuclear enzyme had a higher Km value (54 μg of [32P]phosphoryl DNA/ml). The modified Michaelis-Menten equation provided the amounts of nicks available as substrate in chromatin DNA of isolated nuclei. Neuronal and glial nuclei contained 1.5 and 0.29 pmol of nicks/μg of nuclear DNA, respectively, in contrast to an intermediate amount of nicks in liver nuclei (0.63 pmol/μg of nuclear DNA). DNA ligase activity in neuronal nuclei [312 units (fmol of 5′-phosphomonoester converted into a phosphatase-resistant form per min at 37°C) per μg of nuclear DNA] was 11-fold higher than that in glial nuclei [28.7 units/μg of nuclear DNA]. Liver nuclei contained an intermediate activity [54.7 units/μg of nuclear DNA].  相似文献   

4.
The ability of our cells to maintain genomic integrity is fundamental for protection from cancer development. Central to this process is the ability of cells to recognize and repair DNA damage and progress through the cell cycle in a regulated and orderly manner. In addition, protection of chromosome ends through the proper assembly of telomeres prevents loss of genetic information and aberrant chromosome fusions. Cells derived from patients with ataxia-telangiectasia (A-T) show defects in cell cycle regulation, abnormal responses to DNA breakage, and chromosomal end-to-end fusions. The identification and characterization of the ATM (ataxia-telangiectasia, mutated) gene product has provided an essential tool for researchers in elucidating cellular mechanisms involved in cell cycle control, DNA repair, and chromosomal stability.  相似文献   

5.
Acrylonitrile (VCN) is used extensively in polymer industries, and is known to induce gastric cancer following oral administration, A paucity of information exists regarding the mechanism(s) by which acrylonitrile induces gastric neoplasia. The time course for uptake of radioactivity by gastric tissue and covalent binding of [2,3-14C] VCN or its metabolites to gastric DNA were determined following a single oral dose of 46.5 mg/kg. The rates of DNA synthesis and repair, as measured by unscheduled DNA synthesis in the gastric tissue of VCN-treated rats, were also studied. Maximum tissue uptake and covalent binding of radioactivity to gastric DNA were observed at 15 minutes following [2,3-14C] VCN administration. At 6 hours following VCN administration, significant inhibition (37% of control) in gastric replicative DNA synthesis was observed. A rebound followed by an increase (211% of control) in replicative DNA synthesis was observed at 24 hours. A three-fold elevation in unscheduled DNA synthesis was observed at 24 hours following treatment with VCN. These results indicate that VCN or its metabolites irreversibly interact with gastric DNA, causing DNA damage. The results also indicate that the delayed VCN-induced DNA repair, determined as unscheduled DNA synthesis, is inefficient for the removal of the resulting DNA lesions.  相似文献   

6.
7.
Starting from 1994, every 2 years, an international workshop is organized focused on calreticulin and other endoplasmic reticulum chaperones. In 2017, the workshop took place at Delphi Greece. Participants from North and South America, Europe, Asia and Australia presented their recent data and discussed them extensively with their colleagues. Presentations dealt with structural aspects of calreticulin and calnexin, the role of Ca2+ in cellular signalling and in autophagy, the endoplasmic reticulum stress and the unfolded protein response, the role of calreticulin in immune responses. Several presentations focused on the role of calreticulin and other ER chaperones in a variety of disease states, including haemophilia, obesity, diabetes, Sjogren's syndrome, Chagas diseases, multiple sclerosis, amyotrophic lateral sclerosis, neurological malignancies (especially glioblastoma), haematological malignancies (especially essential thrombocythemia and myelofibrosis), lung adenocarcinoma, renal pathology with emphasis in fibrosis and drug toxicity. In addition, the role of calreticulin and calnexin in growth and wound healing was discussed, as well as the possible use of extracellular calreticulin as a marker for certain diseases. It was agreed that the 13th International Calreticulin Workshop will be organized in 2019 in Montreal, Quebec, Canada.  相似文献   

8.
The ENCyclopedia Of DNA Elements (ENCODE) project is an international research consortium that aims to identify all functional elements in the human genome sequence. The second phase of the project comprised 1640 datasets from 147 different cell types, yielding a set of 30 publications across several journals. These data revealed that 80.4% of the human genome displays some functionality in at least one cell type. Many of these regulatory elements are physically associated with one another and further form a network or three-dimensional conformation to affect gene expression. These elements are also related to sequence variants associated with diseases or traits. All these findings provide us new insights into the organization and regulation of genes and genome, and serve as an expansive resource for understanding human health and disease.  相似文献   

9.
Eukaryotic cells have developed conserved mechanisms to efficiently sense and repair DNA damage that results from constant chromosomal lesions. DNA repair has to proceed in the context of chromatin, and both histone-modifiers and ATP-dependent chromatin remodelers have been implicated in this process. Here, we review the current understanding and new hypotheses on how different chromatin-modifying activities function in DNA repair in yeast and metazoan cells.  相似文献   

10.
11.
The Human Proteome Organisation Proteomics Standards Initiative (HUPO-PSI) was established in 2002 with the aim of defining community standards for data representation in proteomics and facilitating data comparison, exchange and verification. Over the last 10 years significant advances have been made, with common data standards now published and implemented in the field of both mass spectrometry and molecular interactions. The 2012 meeting further advanced this work, with the mass spectrometry groups finalising approaches to capturing the output from recent developments in the field, such as quantitative proteomics and SRM. The molecular interaction group focused on improving the integration of data from multiple resources. Both groups united with a guest work track, organized by the HUPO Technology/Standards Committee, to formulate proposals for data submissions from the HUPO Human Proteome Project and to start an initiative to collect standard experimental protocols.  相似文献   

12.
《Cell》2022,185(25):4703-4716.e16
  1. Download : Download high-res image (150KB)
  2. Download : Download full-size image
  相似文献   

13.
Naik AK  Raghavan SC 《DNA Repair》2008,7(8):1384-1391
P1 nuclease is one of the most extensively used single-strand DNA specific nucleases in molecular biology. In modern biology, it is used as an enzymatic probe to detect altered DNA conformations. It is well documented that P1 cleaves single-stranded nucleic acids and single-stranded DNA regions. The fact that P1 can act under a wide range of conditions, including physiological pH and temperature make it the most commonly used enzymatic probe in DNA structural studies. Surprisingly, to this date, there is no study to characterize the influence of length of mismatches on P1 sensitivity. Using a series of radioactively labeled oligomeric DNA substrates-containing mismatches, we find that P1 nuclease cleavage is dependent on the length of mismatches. P1 does not cleave DNA when there is a single-base mismatch. P1 cleavage efficiency is optimum when mismatch length is 3 nt or more. Changing the position of the mismatches also does not make any difference in cleavage efficacy. These novel findings on P1 properties have implications for its use in DNA structure and DNA repair studies.  相似文献   

14.
《Cell reports》2023,42(1):111909
  1. Download : Download high-res image (125KB)
  2. Download : Download full-size image
  相似文献   

15.
16.
基因组三维结构在基因表达调控中发挥重要作用,染色质拓扑关联结构域(topologically associated domain,TAD)是DNA复制和基因转录的基本功能单位,也是DNA损伤修复的功能单元,在辐射诱导的DNA损伤修复中发挥重要作用。近期研究表明,TAD并非是完全独立的结构单元,其内部常呈现多层级结构,对基因表达具有重要调控作用。为探究TAD多层级结构在细胞辐射响应中的作用,本研究使用TAD层级结构识别算法OnTAD对Gene expression omnibus数据库中5Gy X射线照射的淋巴细胞、成纤维细胞和毛细血管扩张性共济失调突变(ataxia telangiectasia mutated,ATM)基因缺陷的成纤维细胞,共26个样本的Hi-C(high-through chromosome conformation capture,Hi-C)数据进行分析,发现辐射后细胞的TAD层级结构出现规律性变化,高层级TAD缺失较多,低层级TAD相对保守;辐射诱导的TAD层级结构变化通过调节基因表达参与细胞辐射响应;ATM是辐射诱导TAD层级结构变化和恢复的重要因子。本研究为从TAD多层级结构角度理解基因组三维结构在细胞辐射响应中的作用提供了新思路。  相似文献   

17.
18.
Expansion of triplex-forming GAA/TTC repeats in the first intron of FXN gene results in Friedreich's ataxia. Besides FXN, there are a number of other polymorphic GAA/TTC loci in the human genome where the size variations thus far have been considered to be a neutral event. Using yeast as a model system, we demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin, which correlates with their propensity to adopt triplex structure and to block replication progression. We show that fragility is mediated by mismatch repair machinery and requires the MutSbeta and endonuclease activity of MutLalpha. We suggest that the mechanism of GAA/TTC-induced chromosomal aberrations defined in yeast can also operate in human carriers with expanded tracts.  相似文献   

19.
Repetitive DNA sequences exhibit complex structural and energy landscapes, populated by metastable, noncanonical states, that favor expansion and deletion events correlated with disease phenotypes. To probe the origins of such genotype–phenotype linkages, we report the impact of sequence and repeat number on properties of (CNG) repeat bulge loops. We find the stability of duplexes with a repeat bulge loop is controlled by two opposing effects; a loop junction‐dependent destabilization of the underlying double helix, and a self‐structure dependent stabilization of the repeat bulge loop. For small bulge loops, destabilization of the underlying double helix overwhelms any favorable contribution from loop self‐structure. As bulge loop size increases, the stabilizing loop structure contribution dominates. The role of sequence on repeat loop stability can be understood in terms of its impact on the opposing influences of junction formation and loop structure. The nature of the bulge loop affects the thermodynamics of these two contributions differently, resulting in unique differences in repeat size‐dependent minima in the overall enthalpy, entropy, and free energy changes. Our results define factors that control repeat bulge loop formation; knowledge required to understand how this helix imperfection is linked to DNA expansion, deletion, and disease phenotypes. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 1–12, 2014.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号