首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the mineral component of bone and associated collagen has been a matter of continued dispute. We use transmission electron microscopy (TEM) of cryogenically ion milled sections of fully-mineralized cortical bone to study the spatial and topological relationship between mineral and collagen. We observe that hydroxyapatite (HA) occurs largely as elongated plate-like structures which are external to and oriented parallel to the collagen fibrils. Dark field images suggest that the structures ("mineral structures") are polycrystalline. They are approximately 5 nm thick, 70 nm wide and several hundred nm long. Using energy-dispersive X-ray analysis we show that approximately 70% of the HA occurs as mineral structures external to the fibrils. The remainder is found constrained to the gap zones. Comparative studies of other species suggest that this structural motif is ubiquitous in all vertebrates.  相似文献   

2.
Fracture repair recapitulates in adult organisms the sequence of cell biological events of endochondral ossification during skeletal development and growth. After initial inflammation and deposition of granulation tissue, a cartilaginous callus is formed which, subsequently, is remodeled into bone. In part, bone formation is influenced also by the properties of the extracellular matrix of the cartilaginous callus. Deletion of individual macromolecular components can alter extracellular matrix suprastructures, and hence stability and organization of mesenchymal tissues. Here, we took advantage of the collagen IX knockout mouse model to better understand the role of this collagen for organization, differentiation and maturation of a cartilaginous template during formation of new bone. Although a seemingly crucial component of cartilage fibrils is missing, collagen IX-deficient mice develop normally, but are predisposed to premature joint cartilage degeneration. However, we show here that lack of collagen IX alters the time course of callus differentiation during bone fracture healing. The maturation of cartilage matrix was delayed in collagen IX-deficient mice calli as judged by collagen X expression during the repair phase and the total amount of cartilage matrix was reduced. Entering the remodeling phase of fracture healing, Col9a1(-/-) calli retained a larger percentage of cartilage matrix than in wild type indicating also a delayed formation of new bone. We concluded that endochondral bone formation can occur in collagen IX knockout mice but is impaired under conditions of stress, such as the repair of an unfixed fractured long bone.  相似文献   

3.
The composition of the extracellular matrix changes during dermal repair. Initially, hyaluronan (HA) concentration is high, however, by day 3, HA is eliminated. HA optimizes collagen organization within granulation tissue. One possible mechanism of HA modulation of collagen packing is through the promotion of gap junction intercellular communication (GJIC). Gap junctions are gated channels that allow rapid intercellular communication and synchronization of coupled cell activities. The gap junction channel is composed of connexin (Cx) proteins that form a gated channel between coupled cells. HA is reported to enhance Cx43 expression in transformed fibroblasts. GJIC was quantified by the scrape loading technique and reported as a coupling index. The coupling index for human dermal fibroblasts was 4.6 +/- 0.2, while the coupling index for fibroblasts treated with HA more than doubled to 10.6 +/- 0.7. By Western blot analysis no differences were appreciated in the protein levels of Cx43 or beta-catenin, a protein involved in the translocation of Cx to the cell surface. By immuno-histology Cx43 and beta-catenin were evenly distributed throughout the cell in controls, but in cells treated with HA these proteins were co-localized to the cell surface. Coupled fibroblasts are reported to enhance the organization of collagen fibrils. It is proposed that HA increases the accumulation of Cx43 and beta-catenin on the cell surface, leading to greater GJIC and enhanced collagen organization.  相似文献   

4.
The alterations of hierarchical structures of bone by gene mutation in the zebrafish, which is associated with abnormal bone mineralization and bone disease, were reported for the first time in this paper. Bone samples from the liliput(dtc232) (lil) mutants as well as normal controls were studied by polarized light microscope, scanning electron microscope (SEM), transmission electron microscope (TEM), and atomic force microscope (AFM). Light microscopy examinations reveal that the lil bone has asymmetric mineralization and much thinner bone wall. The SEM studies show a lot of microcracks in lil bone wall. And the plywood-like structure of the normal bone does not exist in the lil bone, which is confirmed by the measurements of polarized light microscope. Furthermore, the TEM investigations display the collagen fibrils with two typical diameters. For the thinner collagen fibrils, the diameter of lil bone is about twice larger than that of the wild-type bone. And for the thicker one, there is a small increase in diameter after mutation and the band periodicity of the lil bone is similar with that of wild-type bone, which is consistent with the result of AFM. The morphologies of the minerals revealed that the mutated mineral was in bigger size and the shape was irregular but not plate-shaped.  相似文献   

5.
Ideal biomaterials for bone grafts must be biocompatible, osteoconductive, osteoinductive and have appropriate mechanical properties. For this, the development of synthetic bone substitutes mimicking natural bone is desirable, but this requires controllable mineralization of the collagen matrix. In this study, densified collagen films (up to 100 μm thick) were fabricated by a plastic compression technique and cross-linked using carbodiimide. Then, collagen-hydroxyapatite composites were prepared by using a polymer-induced liquid-precursor (PILP) mineralization process. Compared to traditional methods that produce only extrafibrillar hydroxyapatite (HA) clusters on the surface of collagen scaffolds, by using the PILP mineralization process, homogeneous intra- and extrafibrillar minerals were achieved on densified collagen films, leading to a similar nanostructure as bone, and a woven microstructure analogous to woven bone. The role of collagen cross-links on mineralization was examined and it was found that the cross-linked collagen films stimulated the mineralization reaction, which in turn enhanced the mechanical properties (hardness and modulus). The highest value of hardness and elastic modulus was 0.7 ± 0.1 and 9.1 ± 1.4 GPa in the dry state, respectively, which is comparable to that of woven bone. In the wet state, the values were much lower (177 ± 31 and 8 ± 3 MPa) due to inherent microporosity in the films, but still comparable to those of woven bone in the same conditions. Mineralization of collagen films with controllable mineral content and good mechanical properties provide a biomimetic route toward the development of bone substitutes for the next generation of biomaterials. This work also provides insight into understanding the role of collagen fibrils on mineralization.  相似文献   

6.
It has been reported that the Mg-insufficient bone is fragile upon mechanical loading, despite its high bone mineral density, while vitamin K2 (MK-4: menatetrenone) improved the mechanical strength of Mg-insufficient bone. Therefore, we aimed to elucidate the ultrastructural properties of bone in rats with dietary Mg insufficiency with and without MK-4 supplementation. Morphological examinations including histochemistry, transmission electron microscopy, electron probe microanalysis (EPMA) and X-ray diffraction were conducted on the femora and tibiae of 4-week-old Wistar male rats fed with 1) a normal diet (control group, 0.09% Mg), 2) a Mg-insufficient diet (low Mg group, 0.006% Mg), or 3) a Mg-insufficient diet supplemented with MK-4 (MK-4 group, 0.006% Mg, 0.03% MK-4). MK-4 appeared to inhibit the osteoclastic bone resorption that is stimulated by Mg insufficiency. EPMA analysis, however, revealed an increased concentration of Ca paralleling Mg reduction in the low Mg group. Assessment by X-ray diffraction revealed an abundance of a particular synthetic form of hydroxyapatite in the low Mg group, while control bones featured a variety of mineralized crystals. In addition, Mg-deficient bones featured larger mineral crystals, i.e., crystal overgrowth. This crystalline aberration in Mg-insufficient bones induced collagen fibrils to mineralize easily, even in the absence of mineralized nodules, which therefore led to an early collapse of the fibrils. MK-4 prevented premature collagen mineralization by normalizing the association of collagen fibrils with mineralized nodules. Thus, MK-4 appears to rescue the impaired collagen mineralization caused by Mg insufficiency by promoting a re-association of the process of collagen mineralization with mineralized nodules.  相似文献   

7.
Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions’ orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young’s modulus \(E = 1.90\) GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young’s modulus in the preferential direction of 9–16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.  相似文献   

8.
Bone repair involves bone resorption through osteoclastogenesis and the stimulation of neovascularization and osteogenesis by endothelial progenitor cells (EPCs). However, the role of EPCs in osteoclastogenesis is unclear. In this study, we assess the effects of EPC‐derived exosomes on the migration and osteoclastic differentiation of primary mouse bone marrow‐derived macrophages (BMMs) in vitro using immunofluorescence, western blotting, RT‐PCR and Transwell assays. We also evaluated the effects of EPC‐derived exosomes on the homing and osteoclastic differentiation of transplanted BMMs in a mouse bone fracture model in vivo. We found that EPCs cultured with BMMs secreted exosomes into the medium and, compared with EPCs, exosomes had a higher expression level of LncRNA‐MALAT1. We confirmed that LncRNA‐MALAT1 directly binds to miR‐124 to negatively control miR‐124 activity. Moreover, overexpression of miR‐124 could reverse the migration and osteoclastic differentiation of BMMs induced by EPC‐derived exosomes. A dual‐luciferase reporter assay indicated that the integrin ITGB1 is the target of miR‐124. Mice treated with EPC‐derived exosome‐BMM co‐transplantations exhibited increased neovascularization at the fracture site and enhanced fracture healing compared with those treated with BMMs alone. Overall, our results suggest that EPC‐derived exosomes can promote bone repair by enhancing recruitment and differentiation of osteoclast precursors through LncRNA‐MALAT1.  相似文献   

9.
Artificial extracellular matrices composed of collagen, glycosaminoglycans (GAG), proteoglycans (PG), plasma fibronectin (FN), and a hyaluronate-binding protein (HABP) have been prepared that morphologically resemble embryonic extracellular matrices in vivo at the light and electron microscope level. The effect of each of the above matrix molecules on the structure and "self-assembly" of these artificial matrices was delineated. (1) Matrix components assembled in vitro morphologically resemble their counterparts in vivo, for the most part. Scanning and transmission electron microscopy indicate that under our assembly and fixation conditions, collagen forms striated fibrils that are 125 nm in diameter, FN forms 30- to 60-nm granules, chondroitin sulfate proteoglycan (CSPG) forms 27- to 37-nm granules, chondroitin sulfate (CS) assembles into 100- to 250-nm spheres, and hyaluronate (HA) appears either as granular mats when fixed with cetylpyridinium chloride (CPC) or as 1.5- to 3-nm microfibrils when preserved with ruthenium red plus tannic acid. These molecules are known to assume the same configurations in embryonic matrices when the same preservation techniques are used with the exception of FN, which generally forms fibrillar arrays. (2) Addition of various matrix molecules can radically change the appearance of the collage gels. HA greatly expands the volume of the gel and increases the space between collagen fibrils. CSPG at low concentrations (less than 1 mg/ml) and CS at high concentrations (greater than 20 mg/ml) bundle the collagen fibrils into twisted ropes. (3) A variety of assays were used to examine binding between various matrix components and retention of these components in the hydrated collagen lattices. These assays included solid-phase binding assays, negative staining of spread mixtures of matrix components, cryostat sections of unfixed mixtures of matrix components, and retention of radiolabeled matrix molecules in fixed and washed gels. A number of these binding interactions may play a role in the assembly and stabilization of the matrix. (a) HA, CSPG, and FN bind to collagen. CS appears to only weakly bind to collagen, if at all. (b) FN promotes the increased retention of HA, CSPG, and to a very small degrees, CS, in collagen gels. Conversely, the GAG increase the retention of 3H-FN in the gels. Furthermore, FN binds to HA, CS, and CSPG as demonstrated by solid surface binding assays and morphological criteria. The increased retention of GAG and CSPG by the addition of FN may be due to both stabilization of binding to the collagen and trapping of matrix complexes within the gel. (c) HA binds to both CS and CSPG.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
At the ultrastructural observation scale of fully mineralized tissues (l=1-10 mum), transmission electron micrographs (TEM) reveal that hydroxyapatite (HA) is situated both within the fibrils and extrafibrillarly, and that the majority of HA lies outside the fibrils. The extrafibrillar amount of HA varies from tissue to tissue. By means of mathematical modeling, we here provide strong indications that there exists a physical quantity that is the same inside and outside the fibrils, for all different fully mineralized tissues. This quantity is the average mineral concentration in the non-collagenous space. This space is the sum of the extrafibrillar volume and of the volume of the fibrils that is not occupied by collagen molecules. Two independent sets of experimental observations covering a large range of tissue mass densities establish the relevance of our proposition: (i) mass density measurements and diffraction spacing measurements, re-analyzed through a dimensionally consistent packing model; (ii) optical density measurements of TEMs. The aforementioned average uniform HA-concentration in the extracollagenous space of the ultrastructure may emphasize the putative role played by a number of non-collagenous organic molecules in providing the chemical boundary conditions for mineralization of HA in the extracollagenous space. The probable existence of an average uniform extracollagenous HA concentration has far-reaching consequences for the mechanical behavior of mineralized tissues.  相似文献   

11.
High-voltage (1.0 MV) electron microscopy and stereomicroscopy, electron probe microanalysis, electron diffraction and three-dimensional computer reconstruction, have been used to examine the spatial relationship between the inorganic crystals of calcium phosphate and the collagen fibrils of pickerel and herring bone. High-voltage stereo electron-micrographs were obtained of cross-sections of the cylinder-shaped intramuscular bones in uncalcified regions, in regions where only one or only several crystals had been deposited in some of the fibrils, and in successive sections containing progressively more mineral crystals until the stage of full mineralization was reached. High-resolution electron probe microanalysis confirmed that the electron-dense particles contained calcium and phosphorus. In the earliest stages of mineralization and progressing throughout the mineralization process, the crystals are located only within the collagen fibrils; crystals are not observed free in the extracellular spaces between collagen fibrils. The progressive increase in the mass of mineral deposited in the bone tissue with time occurs, essentially, completely within the collagen fibrils including the stage of full mineralization. At this stage, cross-sectional profiles of collagen fibrils are completely obliterated by mineral. A small number of crystals that are located on or close to the surface of the fibrils appear to extend a very short distance into the spaces between the fibrils. These ultrastructural observations of the very onset of calcification in which nucleation of the calcium phosphate crystals is clearly shown to begin within specific volumes of collagen fibrils, and of the subsequent temporal and spatial sequences of this phenomenon, which shows that calcification continues wholly within the collagen fibrils until maximum calcification is achieved, add important information on the basic physical chemical mechanism of the calcification and the structural elements that are involved. The spatial and temporal independence of the sites where mineralization is initiated establishes that such ultrastructural locations within individual collagen fibrils represent independent, physical chemical nucleation loci. The findings are totally inconsistent with the proposal that crystals must first be deposited in matrix vesicles, or other components such as mitochondria, and subsequently released and propagated in the interfibrillar space, until they eventually reach and impregnate the hole zone regions of the collagen fibrils. Three-dimensional computer reconstruction of serial transverse and longitudinal sections demonstrates periodic swellings along the collagen fibrils, corresponding to the hole zone region of their axial period as mineralization proceeds.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Experimental periodontal regeneration studies have revealed the weak binding of repair cementum to the root surface, whereas attachment of cementum to dentin preconditioned by odontoclasts appears to be superior. The aim of this study has been, therefore, to analyze the structural and partial biochemical nature of the interface that develops between resorbed dentin and repair cementum by using human deciduous teeth as a model. Aldehyde-fixed and decalcified tooth samples were embedded in acrylic or epoxy resins and sectioned for light and transmission electron microscopy. Antibodies against bone sialoprotein (BSP) and osteopontin (OPN), two noncollagenous proteins accumulating at hard tissue interfaces in bone and teeth, were used for protein A-gold immunocytochemistry. Light microscopy revealed a gradually increasing staining intensity of the external dentin matrix starting after the withdrawal of the odontoclast. Labeling for both BSP and OPN was first detected among the exposed collagen fibrils and in the intratubular dentin matrix when odontoclasts had withdrawn but mesenchymal cells were present. Subsequently, collagen fibrils of the repair cementum were deposited concomitantly with the appearance of labeling for BSP and OPN over the intratubular, intertubular, and peritubular dentin matrix. Labeled mineralization foci indicated the advancing mineralization front, and the collagenous repair matrix became integrated in an electron-dense organic material that showed labeling for BSP and OPN. Thus, no distinct planar interfacial matrix layer lies between the resorbed dentin and the repair cementum. The results suggest that odontoclasts precondition the dentin matrix such that the repair cementum becomes firmly attached.This study was supported by the Clinical Research Foundation (CRF) for the Promotion of Oral Health, University of Berne, Berne, Switzerland.  相似文献   

13.
Microstructures of non-unions of human humeral shaft fractures were investigated by using scanning electron microscopy, transmission electron microscopy, and X-ray microdiffraction. The non-union has a trabeculae structural framework similar to woven bone. Among the trabeculae are cavities that are subdivided into small chambers by thin plates of collagen fibrils. Some chambers are filled with variously shaped mineralized particles several micrometers in size. The collagen fibrils in both the trabeculae and the thin plates were only slightly mineralized by hydroxyapatite. Vesicles loaded with noncrystalline calcium phosphate (NCP) were observed in most mineralized particles, and brushite crystals with special morphology were seen to be embedded in some particles in irregular shapes. X-ray microdiffraction results indicated that the mineral phases in the non-unions were mainly NCP in addition to small amounts of hydroxyapatite and brushite. NCP deposition and insufficient mineralization of the collagen fibrils may be two important microstructural features of the non-unions of human humeral shaft fractures different from normally repaired bone callus.  相似文献   

14.
The performance of biomaterials designed for bone repair depends, in part, on the ability of the material to support the adhesion and survival of mesenchymal stem cells (MSCs). In this study, a nanofibrous bone-mimicking scaffold was electrospun from a mixture of polycaprolactone (PCL), collagen I, and hydroxyapatite (HA) nanoparticles with a dry weight ratio of 50/30/20 respectively (PCL/col/HA). The cytocompatibility of this tri-component scaffold was compared with three other scaffold formulations: 100% PCL (PCL), 100% collagen I (col), and a bi-component scaffold containing 80% PCL/20% HA (PCL/HA). Scanning electron microscopy, fluorescent live cell imaging, and MTS assays showed that MSCs adhered to the PCL, PCL/HA and PCL/col/HA scaffolds, however more rapid cell spreading and significantly greater cell proliferation was observed for MSCs on the tri-component bone-mimetic scaffolds. In contrast, the col scaffolds did not support cell spreading or survival, possibly due to the low tensile modulus of this material. PCL/col/HA scaffolds adsorbed a substantially greater quantity of the adhesive proteins, fibronectin and vitronectin, than PCL or PCL/HA following in vitro exposure to serum, or placement into rat tibiae, which may have contributed to the favorable cell responses to the tri-component substrates. In addition, cells seeded onto PCL/col/HA scaffolds showed markedly increased levels of phosphorylated FAK, a marker of integrin activation and a signaling molecule known to be important for directing cell survival and osteoblastic differentiation. Collectively these results suggest that electrospun bone-mimetic matrices serve as promising degradable substrates for bone regenerative applications.  相似文献   

15.
Differential expression of fibrillar collagen genes during callus formation   总被引:5,自引:0,他引:5  
An experimental fracture healing model in the rat tibio-fibular bone was employed to study the appearance of messenger RNAs for types I, II and III collagens during endochondral fracture repair. Total RNA was extracted from normal bone and from callus tissue at various time points. The total RNAs were analyzed in Northern hybridization for their contents of procollagen mRNAs using specific cDNA clones. The results show that during the first week of fracture repair type III collagen mRNA is increased to the greatest extent, followed by type II collagen mRNA during the second week. The 28-day callus resembles bone by containing mainly type I collagen mRNAs and very little type II or III collagen mRNA.  相似文献   

16.
Collagen fibrils are the principal tensile element of vertebrate tissues where they occur in the extracellular matrix as spatially organised arrays. A major challenge is to understand how the mechanisms of nucleation, growth and remodelling yield fibrils of tissue-specific diameter and length. Here we have developed a seeding system whereby collagen fibrils were isolated from avian embryonic tendon and added to purified collagen solution, in order to characterise fibril surface nucleation and growth mechanisms. Fragmentation of tendon in liquid nitrogen followed by Dounce homogenisation generated fibril length fragments. Most (> 94%) of the fractured ends of fibrils, which show an abrupt square profile, were found to act as nucleation sites for further growth by molecular accretion. The mechanism of this nucleation and growth process was investigated by transmission electron microscopy, atomic force microscopy and scanning transmission electron microscopy mass mapping. Typically, a single growth spur occurred on the N-terminal end of seed fibrils whilst twin spurs frequently formed on the C-terminal end before merging into a single tip projection. The surface nucleation and growth process generated a smoothly tapered tip that achieved maximum diameter when the axial extension reached ∼ 13 μm. Lateral growth also occurred along the entire length of all seed fibrils that contained tip projections. The data support a model of collagen fibril growth in which the broken ends of fibrils are nucleation sites for propagation in opposite axial directions. The observed fibril growth behaviour has direct relevance to tendon matrix remodelling and repair processes that might involve rupture of collagen fibrils.  相似文献   

17.
Nikolov S  Raabe D 《Biophysical journal》2008,94(11):4220-4232
We model the elastic properties of bone at the level of mineralized collagen fibrils via step-by-step homogenization from the staggered arrangement of collagen molecules up to an array of parallel mineralized fibrils. A new model for extrafibrillar mineralization is proposed, assuming that the extrafibrillar minerals are mechanically equivalent to reinforcing rings coating each individual fibril. Our modeling suggests that no more than 30% of the total mineral content is extrafibrillar and the fraction of extrafibrillar minerals grows linearly with the overall degree of mineralization. It is shown that the extrafibrillar mineralization considerably reinforces the fibrils’ mechanical properties in the transverse directions and the fibrils’ shear moduli. The model predictions for the elastic moduli and constants are found to be in a good agreement with the experimental data reported in the literature.  相似文献   

18.
In an attempt to determine whether phagocytosis of collagen by fibroblasts involves binding of the fibril to the plasma membrane, the effect of the lectin concanavalin A (Con A) was studied in an in vitro model system. Metacarpal bone rudiments from 19-day-old mouse fetuses were incubated with varying concentrations of the lectin. Quantitative electron microscopic analysis indicated that Con A caused a dose-related increase in the amount of phagocytosed collagen fibrils in periosteal fibroblasts, suggesting either an enhanced uptake or a decreased intracellular breakdown of fibrils. Since a Con A-inducible increase was not seen in the combined presence of both the lectin and the proteinase inhibitor leupeptin, which is known to inhibit the intracellular digestion of phagocytosed fibrillar collagen, it is unlikely that Con A stimulated phagocytosis. Based on the finding that Con A interfered with the digestion of a synthetic substrate by the collagenolytic lysosomal enzyme cathepsin B it is suggested that the augmentation of intracellular fibrillar collagen under the influence of the lectin was due to a decreased intracellular digestion. Since Con A did not inhibit the uptake of collagen fibrils by the fibroblasts it is concluded that Con A-inhibitable binding sites for collagen molecules are unlikely to be involved in phagocytosis of collagen fibrils by fibroblasts.  相似文献   

19.
Normal human skin fibroblasts were grown in a three-dimensional collagen gel or in monolayer in the presence or absence of high molecular weight hyaluronan (HA) to assess the influence of extracellular HA on cell-matrix interactions. HA incorporated into the collagen gel or added to the culture medium did not modify lattice retraction with time. The effect was independent from HA molecular weight (from 7.5 x 10(5) to 2.7 x 10(6) Da) and concentration (from 0.1 up to 1 mg/ml). HA did not affect shape and distribution of fibroblasts within the gel, whereas it induced the actin filaments to organise into thicker cables running underneath the plasma membrane. The same phenomenon was observed in fibroblasts grown in monolayer. By contrast, vimentin cytoskeleton and cell-substrate focal adhesions were not modified by exogenous HA. The number of fibroblasts attached to HA-coated dishes was always significantly lower compared to plastic and to collagen type I-coated plates. By contrast, adhesion was not affected by soluble HA added to the medium nor by anti-CD44 and anti-RHAMM-IHABP polyclonals. After 24-h seeding on collagen type I or on plastic, cells were large and spread. Conversely, cells adherent to HA-coated surfaces were long, thin and aligned into rows; alcian blue showed that cells were attached to the plastic in between HA bundles. Therefore, normal human skin fibroblasts exhibit very scarce, if any, adhesion to matrix HA, either soluble or immobilised. Moreover, even at high concentration, HA molecules do not exert any visco-mechanical effect on lattice retraction and do not interfere with fibroblast-collagen interactions nor with focal adhesion contacts of fibroblasts with the substrate. This is probably relevant in organogenesis and wound repair. By contrast, HA greatly modifies the organisation of the actin cytoskeleton, suggesting that CD44-mediated signal transduction by HA may affect cell locomotion and orientation, as indicated by the fusiform shape of fibroblasts grown in the presence of immobilised HA. A role of HA in cell orientation could be relevant for the deposition of collagen fibrils in regeneration and tissue remodelling.  相似文献   

20.
Articular cartilage and its supporting bone functional conditions are tightly coupled as injuries of either adversely affects joint mechanical environment. The objective of this study was set to quantitatively investigate the extent of alterations in the mechanical environment of cartilage and knee joint in presence of commonly observed osteochondral defects. An existing validated finite element model of a knee joint was used to construct a refined model of the tibial lateral compartment including proximal tibial bony structures. The response was computed under compression forces up to 2000 N while simulating localized bone damage, cartilage–bone horizontal split, bone overgrowth and absence of deep vertical collagen fibrils.Localized tibial bone damage increased overall joint compliance and substantially altered pattern and magnitude of contact pressures and cartilage strains in both tibia and femur. These alterations were further exacerbated when bone damage was combined with base cartilage split and absence of deep vertical collagen fibrils. Local bone boss markedly changed contact pressures and strain patterns in neighbouring cartilage. Bone bruise/fracture and overgrowth adversely perturbed the homeostatic balance in the mechanical environment of articulate cartilage surrounding and opposing the lesion as well as the joint compliance. As such, they potentially contribute to the initiation and development of post-traumatic osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号