首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex is an important chromatin modifying complex that can both acetylate and deubiquitinate histones. Sgf29 is a novel component of the SAGA complex. Here, we report the crystal structures of the tandem Tudor domains of Saccharomyces cerevisiae and human Sgf29 and their complexes with H3K4me2 and H3K4me3 peptides, respectively, and show that Sgf29 selectively binds H3K4me2/3 marks. Our crystal structures reveal that Sgf29 harbours unique tandem Tudor domains in its C-terminus. The tandem Tudor domains in Sgf29 tightly pack against each other face-to-face with each Tudor domain harbouring a negatively charged pocket accommodating the first residue alanine and methylated K4 residue of histone H3, respectively. The H3A1 and K4me3 binding pockets and the limited binding cleft length between these two binding pockets are the structural determinants in conferring the ability of Sgf29 to selectively recognize H3K4me2/3. Our in vitro and in vivo functional assays show that Sgf29 recognizes methylated H3K4 to recruit the SAGA complex to its targets sites and mediates histone H3 acetylation, underscoring the importance of Sgf29 in gene regulation.  相似文献   

2.
《Epigenetics》2013,8(5):492-501
Mastitis is a multietiological complex disease, defined as inflammation of parenchyma of mammary glands. Bacterial infection is the predominant cause of mastitis, though fungal, viral and mycoplasma infections also have been reported. Based on the severity of the disease, mastitis can be classified into subclinical, clinical and chronic forms. Bacterial pathogens from fresh cow milk were isolated and classified by standard microbiological tests and multiplex PCR. Epidemiological studies have shown that Escherichia coli is the second largest mastitis pathogen after Staphylococcus aureus in India. Based on Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR profile and presence of virulence genes, a field isolate of E. coli was used for intramammary inoculation in lactating mice. Histopathological examination of hematoxylin and eosin stained sections showed severe infiltration of polymorphonuclear neutrophils, mononuclear inflammatory cells in the alveolar lumen and also in interstitial space, and necrosis of alveolar epithelial cells after 24 h. Western blot and immunohistochemical analysis of mice mammary tissues showed significant hyperacetylation at histone H3K14 residue of both mammary epithelial cells and migrated inflammatory cells. Quantitative real-time PCR and genome-wide gene expression profile in E. coli infected mice mammary tissue revealed differential expression of genes related to inflammation, immunity, antimicrobial peptide expression, acute phase response and oxidative stress response. Expression of milk proteins was also suppressed. ChIP assay from paraffinized tissues showed selective enrichment of acetylated histone H3K14 and H4K8 at the promoters of overexpressed genes. These data suggest that E. coli infection in mice mammary tissue leads to histone hyperacetylation at the promoter of immune genes, which is a pre-requisite for the expression of inflammatory genes in order to mount a drastic immune response.  相似文献   

3.
Breslin MB  Wang HW  Pierce A  Aucoin R  Lan MS 《FEBS letters》2007,581(5):949-954
INSM1 is a downstream target gene of neurogenin 3 (ngn3). A promoter construct containing the -426/+40bp region transiently co-transfected into NIH-3T3 cells with a ngn3 expression plasmid resulted in a 12-fold increase in promoter activity. The ngn3/E47 heterodimer selectively binds and activates the E-box3 of the INSM1 promoter. The endogenous ngn3 and CREB-binding protein (CBP) co-activator occupy the INSM1 promoter, resulting in hyper-acetylation of histone H3/H4 chromatin in a human neuroblastoma cell line, IMR-32. Additionally, adenoviral ngn3 can induce endogenous INSM-1 expression in pancreatic ductal carcinoma-1 cells through the recruitment of CBP to the INSM1 promoter and increase the acetylation of the INSM1 promoter region.  相似文献   

4.
5.
6.
As infection with wild-type (wt) Sendai virus (SeV) normally activates beta interferon (IFN-beta) very poorly, two unnatural SeV infections were used to study virus-induced IFN-beta activation in mouse embryonic fibroblasts: (i) SeV-DI-H4, which is composed mostly of small, copyback defective interfering (DI) genomes and whose infection overproduces short 5'-triphosphorylated trailer RNAs (pppRNAs) and underproduces viral V and C proteins, and (ii) SeV-GFP(+/-), a coinfection that produces wt amounts of viral gene products but that also produces both green fluorescent protein (GFP) mRNA and its complement, which can form double-stranded RNA (dsRNA) with capped 5' ends. We found that (i) virus-induced signaling to IFN-beta depended predominantly on RIG-I (as opposed to mda-5) for both SeV infections, i.e., that RIG-I senses both pppRNAs and dsRNA without 5'-triphosphorylated ends, and (ii) it is the viral C protein (as opposed to V) that is primarily responsible for countering RIG-I-dependent signaling to IFN-beta. Nondefective SeV that cannot specifically express C proteins not only cannot prevent the effects of transfected poly(I-C) or (ppp)RNAs on IFN-beta activation but also synergistically enhances these effects. SeV-V(minus) infection, in contrast, behaves mostly like wt SeV and counteracts the effects of transfected poly(I-C) or (ppp)RNAs.  相似文献   

7.
8.
Rsc4p, a subunit of the RSC chromatin-remodeling complex, is acetylated at lysine 25 by Gcn5p, a well-characterized histone acetyltransferase (HAT). Mutation of lysine 25 does not result in a significant growth defect, and therefore whether this modification is important for the function of the essential RSC complex was unknown. In a search to uncover the molecular basis for the lethality resulting from loss of multiple histone H3-specific HATs, we determined that loss of Rsc4p acetylation is lethal in strains lacking histone H3 acetylation. Phenotype comparison of mutants with arginine and glutamine substitutions of acetylatable lysines within the histone H3 tail suggests that it is a failure to neutralize the charge of the H3 tail that is lethal in strains lacking Rsc4p acetylation. We also demonstrate that Rsc4p acetylation does not require any of the known Gcn5p-dependent HAT complexes and thus represents a truly novel function for Gcn5p. These results demonstrate for the first time the vital and yet redundant functions of histone H3 and Rsc4p acetylation in maintaining cell viability.  相似文献   

9.
  1. Download : Download high-res image (210KB)
  2. Download : Download full-size image
  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号