首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Saccharomyces cerevisiae is an important industrial cell factory and an attractive experimental model for evaluating novel metabolic engineering strategies. Many current and potential products of this yeast require acetyl coenzyme A (acetyl-CoA) as a precursor and pathways towards these products are generally expressed in its cytosol. The native S. cerevisiae pathway for production of cytosolic acetyl-CoA consumes 2 ATP equivalents in the acetyl-CoA synthetase reaction. Catabolism of additional sugar substrate, which may be required to generate this ATP, negatively affects product yields. Here, we review alternative pathways that can be engineered into yeast to optimize supply of cytosolic acetyl-CoA as a precursor for product formation. Particular attention is paid to reaction stoichiometry, free-energy conservation and redox-cofactor balancing of alternative pathways for acetyl-CoA synthesis from glucose. A theoretical analysis of maximally attainable yields on glucose of four compounds (n-butanol, citric acid, palmitic acid and farnesene) showed a strong product dependency of the optimal pathway configuration for acetyl-CoA synthesis. Moreover, this analysis showed that combination of different acetyl-CoA production pathways may be required to achieve optimal product yields. This review underlines that an integral analysis of energy coupling and redox-cofactor balancing in precursor-supply and product-formation pathways is crucial for the design of efficient cell factories.  相似文献   

2.
1,2-Propanediol (propylene glycol) is an existing commodity chemical and can be produced from renewable resources using microbes. By virtue of being a natural product, relevant biochemical pathways can be harnessed into fermentation processes to produce 1,2-propanediol. In the present review, the chemical process and different biological strategies for the production of 1,2-propanediol are reviewed and compared with the potentials and limitations of all processes. For the successful commercial production of this diol, it is necessary to establish the metabolic pathways and production hosts (microorganisms), which are capable of delivering final product with high yields and volumetric productivity. Three pathways which have been recognized for 1,2-propanediol production are discussed here. In the first, de-oxy sugars like fucose and rhamnose are used as the carbon sources, while in the other route, the glycolytic intermediate-dihydroxyacetonephosphate (DHAP) is used to produce 1,2-propanediol via the formation of methylglyoxal. A new pathway of 1,2-propanediol production by lactic acid degradation under anoxic conditions and the enzymes involved is also discussed. The production of this diol has gained attention because of their newer applications in industries such as polymers, food, pharmaceuticals, textiles, etc. Furthermore, improvement in fermentation technology will permit its uses in other applications. Future prospect in the light of the current research and its potential as a major bulk chemical are discussed.  相似文献   

3.
4.
This review addresses methods of obtaining secondary metabolites from plant cell suspension and hairy root cultures and their exudates, particularly the physiological mechanisms of secondary metabolites release and trafficking. The efficiency for product recovery of metabolites can be increased by various methods, based on the principle of continuous product release into the cultivation medium. The most common methods for metabolite recovery are elicitation, influencing membrane permeability, and in situ product removal. The biosynthetic pathways can be influenced by cultivation conditions, transformation, or application of elicitors. The membrane permeability can be altered through the application of chemical or physical treatments. Product removal can be greatly increased through a two-phase system and the introduction of absorbents into the cultivation medium. In this review, we describe some improved approaches that have proven useful in these efforts.  相似文献   

5.
6.
Terpenoids are a highly diverse class of natural products that have historically provided a rich source for discovery of pharmacologically active small molecules, such as paclitaxel (Taxol) and artemisinin. Unfortunately, these secondary metabolites are typically produced in low abundance in their host organism, and their isolation consequently suffers from low yields and high consumption of natural resources. Furthermore, chemical synthesis of terpenoids can also be difficult to scale for industrial production. For these reasons, an attractive alternative strategy is to engineer metabolic pathways for production of pharmaceuticals or their precursors in a microbial host such as Escherichia coli. A key step is developing methods to carry out cytochrome P450 (P450)-based oxidation chemistry in vivo. Toward this goal, we have assembled two heterologous pathways for the biosynthesis of plant-derived terpenoid natural products, and we present the first examples of in vivo production of functionalized terpenoids in E. coli at high titer using native plant P450s.  相似文献   

7.
8.
Whole-cell biocatalysis in organic media   总被引:26,自引:0,他引:26  
The use of water-immiscible organic solvents in whole-cell biocatalysis has been exploited for biotransformations involving sparingly water-soluble or toxic compounds. These systems can overcome the problem of low productivity levels in conventional media due to poor substrate solubility, integrate bioconversion and product recovery in a single reactor, and shift chemical equilibria enhancing yields and selectivities; nevertheless, the selection of a solvent combining adequate physicochemical properties with biocompatibility is a difficult task. The cell membrane seems to be the primary target of solvent action and the modification of its characteristics the more relevant cellular adaptation mechanism to organic solvent-caused stress. Correlations between the cellular toxicity or the extractive capacities of different solvents and some of their physical properties have been proposed in order to minimize preliminary, solvent-selection experimental work but also to help in the understanding of the molecular mechanisms of toxicity and extraction. The use of whole cells in organic-media biocatalysis provides a way to regenerate cofactors and carry out bioconversions or fermentations requiring multi-step metabolic pathways; some processes already are commercially exploited. Immobilization can further protect cells from solvent toxicity, and has thus been effectively used in organic solvent-based systems. Several examples of extractive fermentations and other whole-cell bioconversions in organic media are presented.  相似文献   

9.
10.
Photosynthetic chemical production in cyanobacteria is a promising technology for renewable energy, CO2 mitigation, and fossil fuel replacement. Metabolic engineering has enabled a direct biosynthetic process from CO2 fixation to chemical feedstocks and biofuels, without requiring costly production, storage, and breakdown of cellulose or sugars. However, direct production technology is challenged by a need to achieve high-carbon partitioning to products in order to be competitive. This review discusses principles for the design of biosynthetic pathways in cyanobacteria and describes recent advances in relevant genetic tools. This field is at a critical juncture in assessing the strength and feasibility of carbon partitioning. To address this, we have included the stoichiometry of reducing equivalents and carbon conservation for heterologous pathways, and a method for calculating product yields against a theoretical maximum.  相似文献   

11.
Due to their unique physical properties, waxes are high-value materials that are used in a variety of industrial applications. They are generated by chemical synthesis, extracted from fossil sources, or harvested from a small number of plant and animal species. As a result, the diversity of chemical structures in commercial waxes is low and so are their yields. These limitations can be overcome by engineering of wax biosynthetic pathways in the seeds of high-yielding oil crops to produce designer waxes for specific industrial end uses. In this review, we first summarize the current knowledge regarding the genes and enzymes generating the chemical diversity of cuticular waxes that accumulate at the surfaces of primary plant organs. We then consider the potential of cuticle biosynthetic genes for biotechnological wax production, focusing on selected examples of wax ester chain lengths and isomers. Finally, we discuss the genes/enzymes of cuticular alkane biosynthesis and their potential in future metabolic engineering of plants for the production of renewable hydrocarbon fuels.  相似文献   

12.
The establishment of homeostasis among cell growth, differentiation, and apoptosis is of key importance for organogenesis. Stem cells respond to temporally and spatially regulated signals by switching from mitotic proliferation to asymmetric cell division and differentiation. Executable computer models of signaling pathways can accurately reproduce a wide range of biological phenomena by reducing detailed chemical kinetics to a discrete, finite form. Moreover, coordinated cell movements and physical cell-cell interactions are required for the formation of three-dimensional structures that are the building blocks of organs. To capture all these aspects, we have developed a hybrid executable/physical model describing stem cell proliferation, differentiation, and homeostasis in the Caenorhabditis elegans germline. Using this hybrid model, we are able to track cell lineages and dynamic cell movements during germ cell differentiation. We further show how apoptosis regulates germ cell homeostasis in the gonad, and propose a role for intercellular pressure in developmental control. Finally, we use the model to demonstrate how an executable model can be developed from the hybrid system, identifying a mechanism that ensures invariance in fate patterns in the presence of instability.  相似文献   

13.
Dihydrofolate reductase from Mycobacterium tuberculosis (MtDHFR) catalyzes the NAD(P)H-dependent reduction of dihydrofolate, yielding NAD(P)(+) and tetrahydrofolate, the primary one-carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism can be maintained. Previously, steady-state studies revealed that the chemical step significantly contributes to the steady-state turnover number, but that a step after the chemical step was likely limiting the reaction rate. Here, we report the first pre-steady-state investigation of the kinetic sequence of the MtDHFR aiming to identify kinetic intermediates, and the identity of the rate-limiting steps. This kinetic analysis suggests a kinetic sequence comprising two parallel pathways with a rate-determining product release. Although product release is likely occurring in a random fashion, there is a slight preference for the release of THF first, a kinetic sequence never observed for a wild-type dihydrofolate reductase of any organism studied to date. Temperature studies were conducted to determine the magnitude of the energetic barrier posed by the chemical step, and the pH dependence of the chemical step was studied, demonstrating an acidic shift from the pK(a) observed at the steady state. The rate constants obtained here were combined with the activation energy for the chemical step to compare energy profiles for each kinetic sequence. The two parallel pathways are discussed, as well as their implications for the catalytic cycle of this enzyme.  相似文献   

14.
The radiation-induced reactions of a water-soluble coumarin derivative, coumarin-3-carboxyl acid (C3CA), have been investigated in aqueous solutions by pulse radiolysis with a 35 MeV electron beam, final product analysis following (60)Co γ-irradiations and deterministic model simulations. Pulse radiolysis revealed that C3CA reacted with both hydroxyl radicals ((?)OH) and hydrated electrons (e(-) (aq)) with near diffusion-controlled rate constants of 6.8 × 10(9) and 2.1 × 10(10) M(-1) s(-1), respectively. The reactivity of C3CA towards O(2)(? -) was not confirmed by pulse radiolysis. Production of the fluorescent molecule, 7-hydroxy-coumarin-3-carboxylic acid (7OH-C3CA), was confirmed by final product analysis with a fluorescence spectrometer coupled to a high performance liquid chromatography (HPLC) system. Production yields of 7OH-C3CA following (60)Co γ-irradiations depended on the irradiation conditions and ranged from 0.025 to 0.18 (100 eV) (-1). Yield varied with saturating gas, additive and C3CA concentration, implying the presence of at least two pathways capable of providing 7OH-C3CA as a stable product following the scavenging reaction of C3CA with (?)OH, including a peroxidation/elimination sequence and a disproportionation pathway. A reaction mechanism for the two pathways was proposed and incorporated into a deterministic simulation, showing that the mechanism can explain experimentally measured 7OH-C3CA yields with a constant conversion factor of 4.7% from (?)OH scavenging to 7OH-C3CA production, unless t-BuOH was added.  相似文献   

15.
Large-scale production of bis-3′-5′-cyclic-di-GMP (c-di-GMP) would facilitate biological studies of numerous bacterial signaling pathways and phenotypes controlled by this second messenger molecule, such as virulence and biofilm formation. C-di-GMP constitutes also a potentially interesting molecule as a vaccine adjuvant. Even though chemical synthesis of c-di-GMP can be done, the yields are incompatible with mass-production. tDGC, a stand-alone diguanylate cyclase (DGC or GGDEF domain) from Thermotoga maritima, enables the robust enzymatic production of large quantities of c-di-GMP. To understand the structural correlates of tDGC thermostability, its catalytic mechanism and feedback inhibition, we determined structures of an active-like dimeric conformation with both active (A) sites facing each other and of an inactive dimeric conformation, locked by c-di-GMP bound at the inhibitory (I) site. We also report the structure of a single mutant of tDGC, with the R158A mutation at the I-site, abolishing product inhibition and unproductive dimerization. A comparison with structurally characterized DGC homologues from mesophiles reveals the presence of a higher number of salt bridges in the hyperthermophile enzyme tDGC. Denaturation experiments of mutants disrupting in turn each of the salt bridges unique to tDGC identified three salt-bridges critical to confer thermostability.  相似文献   

16.
Necrosis is an ancient topic which gains new attraction in the research area these years. There is no doubt that some necrosis can be regulated by genetic manipulation other than an accidental cell death resulting from physical or chemical stimuli. Recent advances in the molecular mechanism underlying the programmed necrosis show a fine regulation network which indicates new therapy targets in human diseases. Heart diseases seriously endanger our health and have high fatality rates in the patients. Cell death of cardiac myocytes is believed to be critical in the pathogenesis of heart diseases. Although necrosis is likely to play a more important role in cardiac cell death than apoptosis, apoptosis has been paid much attention in the past 30 years because it used to be considered as the only form of programmed cell death. However, recent findings of programmed necrosis and the related signalling pathways have broadened our horizon in the field of programmed cell death and promote new pharmacological application in the treatment of heart diseases. In this review, we summarize the advanced progress in these signalling pathways and discuss the pathos‐physiological relevance and therapeutic implication of targeting necrosis in heart diseases treatment.  相似文献   

17.
Bioconversion of xylose—the second most abundant sugar in nature—into high-value fuels and chemicals by engineered Saccharomyces cerevisiae has been a long-term goal of the metabolic engineering community. Although most efforts have heavily focused on the production of ethanol by engineered S. cerevisiae, yields and productivities of ethanol produced from xylose have remained inferior as compared with ethanol produced from glucose. However, this entrenched focus on ethanol has concealed the fact that many aspects of xylose metabolism favor the production of nonethanol products. Through reduced overall metabolic flux, a more respiratory nature of consumption, and evading glucose signaling pathways, the bioconversion of xylose can be more amenable to redirecting flux away from ethanol towards the desired target product. In this report, we show that coupling xylose consumption via the oxidoreductive pathway with a mitochondrially-targeted isobutanol biosynthesis pathway leads to enhanced product yields and titers as compared to cultures utilizing glucose or galactose as a carbon source. Through the optimization of culture conditions, we achieve 2.6 g/L of isobutanol in the fed-batch flask and bioreactor fermentations. These results suggest that there may be synergistic benefits of coupling xylose assimilation with the production of nonethanol value-added products.  相似文献   

18.
The necessarily sharp focus of metabolic engineering and metabolic synthetic biology on pathways and their fluxes has tended to divert attention from the damaging enzymatic and chemical side-reactions that pathway metabolites can undergo. Although historically overlooked and underappreciated, such metabolite damage reactions are now known to occur throughout metabolism and to generate (formerly enigmatic) peaks detected in metabolomics datasets. It is also now known that metabolite damage is often countered by dedicated repair enzymes that undo or prevent it. Metabolite damage and repair are highly relevant to engineered pathway design: metabolite damage reactions can reduce flux rates and product yields, and repair enzymes can provide robust, host-independent solutions. Herein, after introducing the core principles of metabolite damage and repair, we use case histories to document how damage and repair processes affect efficient operation of engineered pathways – particularly those that are heterologous, non-natural, or cell-free. We then review how metabolite damage reactions can be predicted, how repair reactions can be prospected, and how metabolite damage and repair can be built into genome-scale metabolic models. Lastly, we propose a versatile ‘plug and play’ set of well-characterized metabolite repair enzymes to solve metabolite damage problems known or likely to occur in metabolic engineering and synthetic biology projects.  相似文献   

19.
A laccase catalyzed oxidative treatment of wood pulp fibers has been found to induce unusual modifications of these fibers that are qualitatively different from those encountered when more severely degraded fibers are subjected to similar enzymatically catalyzed oxidative treatments. These results suggest that the physical/conformational state of the lignin of wood fibers determines which oxidation pathways dominate in a given oxidative treatment, leading to different lignin modifications depending on both the chemical and the physical structure of the lignin polymer. Spectroscopic measurements (ESR, IR, UV-Vis and fluorescence) show that the laccase treatment results in the formation of two different species in the dried fibers: one is interpreted as chemically transformed (via oxygen) lignin products, and the other as initial oxidation radicals which have gained stabilization against transformation into the first mentioned products via a migration mechanism. It is argued that these initial radicals may likely be cation radical (or hole state) parts in lignin. The migration mechanism is identified with site-to-site transfer or 'hopping' via electron transfer and it is postulated that this mechanism 'carries' cation radical parts of the lignin, produced at the surface of the fiber, into parts of the lignin where chemical transformation pathways are suppressed due to the lignin conformational state. The possible existence of such a migration mechanism, the relative dominance of which should depend sensitively on the polymer conformational state, may have implications for the biogeneration and biodegradation of lignin as well as for oxidative treatments of non-natural conjugated polymers.  相似文献   

20.
Predicting the behavior of living organisms is an enormous challenge given their vast complexity. Efforts to model biological systems require large datasets generated by physical binding experiments and perturbation studies. Genetic perturbations have proven important and are greatly facilitated by the advent of comprehensive mutant libraries in model organisms. Small-molecule chemical perturbagens provide a complementary approach, especially for systems that lack mutant libraries, and can easily probe the function of essential genes. Though single chemical or genetic perturbations provide crucial information associating individual components (for example, genes, proteins or small molecules) with pathways or phenotypes, functional relationships between pathways and modules of components are most effectively obtained from combined perturbation experiments. Here we review the current state of and discuss some future directions for 'combination chemical genetics', the systematic application of multiple chemical or mixed chemical and genetic perturbations, both to gain insight into biological systems and to facilitate medical discoveries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号