首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Radiation damping of surface plasmon oscillations in metallic nanoparticles is proportional to their volume. For relatively large particles, this canal dominates the other mechanisms of relaxation and becomes the main limiting factor for spectral sensitivity of nanoparticles. In this communication, we consider metallic nanoshell with the dielectric core and calculate the radiation damping rate of surface plasmon oscillations, depending on the geometry and dielectric constants of the surrounding environment and the core. It is shown that surface plasmon radiation damping in nanoshell is suppressed by several orders of magnitude as compared to the solid particle of the same outer radius. This effect is conditioned by strong redshift of surface plasmon frequencies with the decrease of shell thickness. It is also demonstrated that the radiation damping rate of core–shell particle is highly sensitive with respect to the refractive index of surrounding media.  相似文献   

2.
The optical extinction spectra of micro- and nanoparticles made up of high-contrast dielectrics exhibit a set of very intense peaks due to the excitations of morphology-dependent resonances (MDRs). These kind of resonances are well known at the microscopic scale as whispering gallery modes. In this work, we study numerically the optical spectra corresponding to a core–shell structure composed by an infinite silicon nanowire coated with a silver shell. This structure shows a combination of both excitations: MDRs and the well-known surface plasmon resonances in dielectric metallic core–shell nanoparticles (Ekeroth Abraham and Lester, Plasmon 2012). We compute in an exact form the complete electromagnetic response for both bare and coated silicon nanowires in the range of 24–200 nm of cross-sectional sizes. We take into account an experimental bulk dielectric function of crystalline silicon and silver by using a correction by size of the metal dielectric function. In this paper, we consider small silver shells in the range of 1–10 nm of thickness as coatings. We analyze the optical response in both the far and near fields, involving wavelengths in the extended range of 300–2,400 nm. We show that the MDRs excited at the core are selectively perturbated by the metallic shell through the bonding and antibonding surface plasmons (SPs). This perturbation depends on both the size of the core and the thickness of the shell, and, as a consequence, we get an efficient tuneable and detectable simple system. Our calculations apply perfectly to long nanotubes compared to the wavelength for the two fundamental polarizations (s, p).  相似文献   

3.
Negative curvature-dependent localized surface plasmon resonance (LSPR) properties of concentric core–shell metallic nanostructure have been studied using quasistatic approach and plasmon hybridization theory. Whether in single-layered gold nanoshell or double gold nanoshells, the oscillating surface charges always concentrate close to the poles of the metal surface with negative curvature, which results in the anisotropic local electric field distribution and affects both the inter-surface plasmonic coupling and inter-shell plasmonic coupling. Therefore, the change of the radius of the gold surface with negative curvature could modulate the plasmon hybridization and lead to the LSPR shifting. The physical mechanism of the negative curvature-dependent LSPR presents a potential for design and fabrication of nanoscale optical device based on core–shell type metallic nanostructures.  相似文献   

4.
The optical properties of dielectric core-metallic concentric shell nanoparticles show a highly sensitive dependence on geometrical parameters of the system. It is due to the strong interaction between plasmon modes excited on the surfaces of the metallic shell. Perturbations in the symmetries of the system modify these interactions and enable new ones, giving rise to dramatic variations in the far field spectrum. In this paper, we examine the electromagnetic response (far and near fields) of hollow metallic nanotubes (nts) with empty or dielectric core as a function of the offset parameter between the core and the shell. The evolution of extinction spectra shows a strong redshift for the dipolar resonance when the offset parameter is increasing, whereas new multipole interactions can be observed at high energy. As dimers, the extinction cross section for nts with nonhomogeneous shell thickness depends on incidence angle with respect to offset axis. We show that for a given offset, the lowest energy peak in extinction curves experiences both, a blueshift and increase of intensity when the angle of incidence is varied with respect to the axis of eccentricity. Maxima of both intensity and blueshift are achieved for an incidence perpendicular to the axis of eccentricity. We show that the optical properties provide sufficient information to unambiguously characterize the system. To compute the electromagnetic field at any point in space, we implemented a rigorous integral formalism (2D geometry) for the two fundamental modes of polarization (s and p modes).  相似文献   

5.
The surface plasmon resonances of silver nanoshell particles are studied by Green’s function. The nanoshell system of plasmon resonances results from the coupling of the inner and outer shell surface plasmon. The shift of the nanoshell plasmon resonances wavelength is plotted against with different dielectric environments, several different dielectric cores, the ratio of the inner and outer radius, and also its assemblies. The results show that a red- and blue-shifted localized surface plasmon can be tuned over an extended wavelength range by varying dielectric environments, the dielectric constants and the radius of nanoshell core respectively. In addition, the separation distances, the distribution of electrical field intensity, the incident directions and its polarizations are also investigated. The study is useful to broaden the application scopes of Raman spectroscopy and nano-optics.  相似文献   

6.
Linear and nonlinear (NL) optical properties of colloids containing metallic core–dielectric shell nanoellipsoids (NEs) were studied using the Maxwell-Garnett model. Influence of the NE geometry and the linear refraction index of the shell and the host on the linear optical properties and the enhancement factor due to the local field factor of metallic NEs in aqueous solution were analyzed. The expression for the third-order NL susceptibility for this composite material was obtained based on the NL response of aligned NEs. Results show that the plasmon resonance peak (PRP) and the enhancement factors can be tuned changing the NE geometry and the dielectric properties of the shell and the host.  相似文献   

7.
A new technique for localization of the light in subwavelength scale is proposed by using two adjacent metallic wedges, which are made by different metals, i.e., Al and Ag. Green’s function surface integral equation method is exploited to numerically calculate magnetic field at different points. The results illustrate that by controlling the phase difference between two surface plasmon polariton waves propagating on the sides of the first wedge and the distance between two wedges the amplitude and the phase of SPP waves generated on the sides of the second wedge can be adjusted.  相似文献   

8.
A controllable nanosized light source based on nonlinear interaction of light and a semiconductor nanowire is proposed. Surface plasmon polariton (SPP) waves with different frequencies propagate along the upper and lower surfaces of a truncated metallic film and are scattered at its end face. A nanowire, in that vicinity, is pumped by the scattered light, and new harmonics are generated via second-order nonlinear optical effects. Green's function surface integral equation method is exploited to numerically calculate the electric field, the magnetic field, and the power of the generated frequency components. Results show that the power of the generated harmonics depends on the position and radius of the nanowire, thickness of the metallic film, as well as the wavelength of the incident SPP waves. On the other hand, by controlling the phase difference between incident SPP waves having the same frequencies, it is possible to manipulate the electric field pattern and also to change the power of the generated harmonics.  相似文献   

9.
We present a new approach to surface plasmon microscopy with high refractive index sensitivity and spatial resolution that is not limited by the propagation length of surface plasmons. It is based on a nanostructured metallic sensor surface supporting Bragg-scattered surface plasmons. We show that these non-propagating surface plasmon modes are excellently suited for spatially resolved observations of refractive index variations on the sensor surface owing to their highly confined field profile perpendicular to as well as parallel to the metal interface. The presented theoretical study reveals that this approach enables reaching similar refractive index sensitivity as regular surface plasmon resonance (SPR) microscopy and offers the advantage of improved spatial resolution when observing dielectric features with lateral size <10???m for the wavelength around 800?nm and gold as the SPR-active metal. This paper demonstrates the potential of Bragg-scattered surface plasmon microscopy for high-throughput SPR biosensing with high-density microarrays.  相似文献   

10.
In the present study, we have investigated the extinction spectra of coated sphere (using dipole model) with different core–shell radius, in which the core is TiO2 and the shell is made up of silver or gold nanoparticles. Nanoparticles exhibit surface plasmon resonance peak; these plasmonic peaks are highly tunable in wavelength range of 300 to 1,100 nm; in fact, the blue and red shifting of resonance peak highly depends on the core–shell thickness. The broadness of resonance peaks are analysed in terms of full width at half maxima (FWHM), and the width of these resonance peaks is also the function of core–shell radius.  相似文献   

11.
Li  Jie  Yang  Chaojie  Li  Jiaming  Li  Ziwei  Zu  Shuai  Song  Siyu  Zhao  Huabo  Lin  Feng  Zhu  Xing 《Plasmonics (Norwell, Mass.)》2014,9(4):879-886

In this review, we show that by designing the metallic nanostructures, the surface plasmon (SP) focusing has been achieved, with the focusing spot at a subwavelength scale. The central idea is based on the principle of optical interference that the constructive superposition of SPs with phase matching can result in a considerable electric-field enhancement of SPs in the near field, exhibiting a pronounced focusing spot. We first reviewed several new designs for surface plasmon focusing by controlling the metallic geometry or incident light polarization: We made an in-plane plasmonic Fresnel zone plates, a counterpart in optics, which produces an obvious SP focusing effect; We also fabricated the symmetry broken nanocorrals which can provide the spatial phase difference for SPs, and then we propose another plasmon focusing approach by using semicircular nanoslits, which gives rise to the phase difference through changing refractive index of the medium in the nanoslits. Further, we showed that the spiral metallic nanostructure can be severed as plasmonic lens to control the plasmon focusing under a linearly polarized light with different angles.

  相似文献   

12.

We theoretically propose a surface plasmon resonance (SPR)-based fiber optic refractive index (RI) sensor. A surface plasmon exciting metallic grating formed with the alternation of indium tin oxide (ITO) and silver (Ag) stripes is considered on the core of the fiber. A thin film of silicon is used as an overlay. Silicon film not only protects the metallic grating from oxidation but also enhances the field to improve the device sensitivity. The sensor is characterized in terms of sensitivity, detection accuracy (DA), figure of merit (FoM), and quality factor (QF). The maximum sensitivity in the RI range 1.33 to 1.38 refractive index unit (RIU) is reported to be?~25 µm/RIU in infra-red region of investigation.

  相似文献   

13.
In this study, the effect of plasmonic core‐shell structures, consisting of dielectric cores and metallic nanoshells, on energy conversion in dye‐sensitized solar cells (DSSCs) is investigated. The structure of the core‐shell particles is controlled to couple with visible light so that the visible component of the solar spectrum is amplified near the core‐shell particles. In core‐shell particle – TiO2 nanoparticle films, the local field intensity and light pathways are increased due to the surface plasmons and light scattering. This, in turn, enlarges the optical cross‐section of dye sensitizers coated onto the mixed films. When 22 vol% of core‐shell particles are added to a 5 μm thick TiO2 film, the energy conversion efficiency of DSSCs increases from 2.7% to 4.0%, in spite of a more than 20% decrease in the amount of dyes adsorbed on the composite films. The correlation between core‐shell particle content and energy conversion efficiency in DSSCs is explained by the balance among near‐field effects, light scattering efficiency, and surface area in the composite films.  相似文献   

14.
Linear clusters made by tightly connecting two or more metallic nanoparticles have new types of surface plasmon resonances as compared with isolated nanoparticles. These new resonances are sensitive to the size of the junction and to the number of interconnected particles and are described by eigenmodes of a boundary integral equation. This formulation allows effective separation of geometric and shape contribution from electric properties of the constituents. Results for particles covered by a thin shell are also provided highlighting ultrasensitive sensing applications. The present analysis sheds a new light on the interpretation of recent experiments.  相似文献   

15.
We systematically study the lattice plasmon resonance structures, which are known as core/shell SiO2/Au nanocylinder arrays (NCAs), for high-performance, on-chip plasmonic sensors using the substrate-independent lattice plasmon modes (LPMs). Our finite-difference time-domain simulations reveal that new modes of localized surface plasmon resonances (LSPRs) show up when the height-diameter aspect ratio of the NCAs is increased. The height-induced LSPRs couple with the superstrate diffraction orders to generate the substrate-independent LPMs. Moreover, we show that the high wavelength sensitivity and the narrow linewidth of the substrate-independent LPMs lead to the plasmonic sensors with high figure of merit (FOM) and high signal-to-noise ratio (SNR). In addition, the plasmonic sensors are robust in asymmetric environments for a wide range of working wavelengths. Our further study of both far- and near-field electromagnetic distribution in the NCAs confirms the height-enabled tunability of the plasmonic “hot spots” at the sub-nanoparticle resolution and the large field enhancement in the substrate-independent LPMs, which are responsible for the high FOM and SNR of the plasmonic sensors.  相似文献   

16.
Sensors based on surface plasmon resonance (SPR) allow rapid, label-free, highly sensitive detection, and indeed this phenomenon underpins the only label-free optical biosensing technology that is available commercially. In these sensors, the existence of surface plasmons is inferred indirectly from absorption features that correspond to the coupling of light into a thin metallic film. Although SPR is not intrinsically a radiative process, when the metallic coating which support the plasmonic wave exhibits a significant surface roughness, the surface plasmon can itself couple to the local photon states, and emit light. Here we show that using silver coated optical fibres, this novel SPR transducing mechanism offers significant advantages compare to traditional reflectance based measurements such as lower dependency on the metallic thickness and higher signal to noise ratio. Furthermore, we show that more complex sensor architectures with multiple sensing regions scattered along a single optical fibre enable multiplexed detection and dynamic self referencing of the sensing signal. Moreover, this alternative approach allows to combine two different sensing technologies, SPR and fluorescence sensing within the same device, which has never been demonstrated previously. As a preliminary proof of concept of potential application, this approach has been used to demonstrate the detection of the seasonal influenza A virus.  相似文献   

17.
Plasmonic nanoparticles are an attractive material for light harvesting applications due to their easily modified surface, high surface area and large extinction coefficients which can be tuned across the visible spectrum. Research into the plasmonic enhancement of optical transitions has become popular, due to the possibility of altering and in some cases improving photo-absorption or emission properties of nearby chromophores such as molecular dyes or quantum dots. The electric field of the plasmon can couple with the excitation dipole of a chromophore, perturbing the electronic states involved in the transition and leading to increased absorption and emission rates. These enhancements can also be negated at close distances by energy transfer mechanism, making the spatial arrangement of the two species critical. Ultimately, enhancement of light harvesting efficiency in plasmonic solar cells could lead to thinner and, therefore, lower cost devices. The development of hybrid core/shell particles could offer a solution to this issue. The addition of a dielectric spacer between a gold nanoparticles and a chromophore is the proposed method to control the exciton plasmon coupling strength and thereby balance losses with the plasmonic gains. A detailed procedure for the coating of gold nanoparticles with CdS and ZnS semiconductor shells is presented. The nanoparticles show high uniformity with size control in both the core gold particles and shell species allowing for a more accurate investigation into the plasmonic enhancement of external chromophores.  相似文献   

18.
This paper reports on the enhancement of fluorescence that can result from the proximity of fluorophores to metallic nanoparticles (NPs). This plasmonic enhancement, which is a result of the localized surface plasmon resonance at the metal surface, can be exploited to improve the signal obtained from optical biochips and thereby lower the limits of detection. There are two distinct enhancement effects: an increase in the excitation of the fluorophore and an increase in its quantum efficiency. This study focuses on the first of these effects where the maximum enhancement occurs when the NP plasmon resonance wavelength coincides with the fluorophore absorption band. In this case, the excitation enhancement is proportional to the square of the amplitude of the electric field. The scale of the enhancement depends on many parameters, such as NP size and shape, metal type, and NP–fluorophore separation. A model system consisting of spherical gold/silver alloy NPs, surrounded by a silica spacer shell, to which is attached a fluorescent ruthenium dye, was chosen and the dependence of the fluorescence enhancement on NP diameter was investigated. Theoretical calculations, based on Mie theory, were carried out to predict the maximum possible enhancement factor for spherical NPs with a fixed composition and a range of diameters. Spherical NPs of the same composition were fabricated by chemical preparation techniques. The NPs were coated with a thin silica shell to overcome quenching effects and the dye was attached to the shell.  相似文献   

19.
A theoretical study based on quasi-static approximation is performed to investigate the location-dependent local field enhancement around the dielectric shell-coated gold nanosphere. Our calculation results show that the local field distribution near a gold nanoparticle can be altered greatly by coating with a dielectric shell. Because of the polarizability of the dielectric shell, increasing azimuth angle along the inner surface leads to the increase of the local field, which is opposite to that of the outer surface. Furthermore, the location-dependent local field enhancement and resonance frequency at both the inner and outer surfaces can also be modulated by varying the shell thickness and shell dielectric constant. These calculation results about the location-dependent local field enhancement show the potential of dielectric-coated metallic nanostructure for single-molecule detection based on surface-enhanced Raman scattering and surface enhanced fluorescence.  相似文献   

20.
In this report, we have investigated enhanced surface plasmon resonance (SPR) detection of DNA hybridization using gold core - silica shell nanoparticles in localized plasmonic fields. The plasmonic fields were localized by periodic linear gratings. Experimental results measured for hybridization of 24-mer single-stranded DNA oligomers suggest that core-shell nanoparticles (CSNPs) on gratings of 400 nm period provide enhanced optical signatures by 36 times over conventional thin film-based SPR detection. CSNP-mediated DNA hybridization produced 3 times larger angular shift compared to gold nanoparticles of the same core size. We have also analyzed the effect of structural variation. The enhancement using CSNPs was associated with increased surface area and index contrast that is combined by improved plasmon coupling with localized fields on gratings. The combined approach for conjugated measurement of a biomolecular interaction on grating structures is expected to lower the limit of detection to the order of a few tens of fg/mm(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号