首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Phylogenetic analysis of cyanobacteria was carried out using the small subunit rRNA (16S rRNA), DNA gyrase subunit B (gyrB), DNA-dependent RNA polymerase gamma subunit (rpoC1) and a principal sigma factor of E. coli sigma(70) type for DNA-dependent RNA polymerase (rpoD1) gene sequences of 24 strains which contained 5 subgroups of cyanobacteria-3 strains of the Chroococcales, 5 strains of the Pluerocapsales, 7 strains of the Oscillatoriales, 7 strains of the Nostocales and 2 strains of the Stigonematales. Degenerated PCR primers of gyrB, rpoC1 and rpoD1 genes were designed using consensus amino acid sequences registered in GenBank. The phylogenetic positions of cyanobacteria were resolved through phylogenetic analysis based on 16S rDNA, gyrB, rpoC1 and rpoD1 gene sequences. Phylogenies of gyrB, rpoC1 and rpoD1 support 16S rRNA-based classification of cyanobacteria. Interestingly, phylogenies from amino acid sequences deduced from gyrB and combined amino acid sequences deduced from rpoC1 and rpoD1 genes strongly support that of 16S rRNA, but the branching pattens of the trees based on 16S rDNA, GyrB, rpoC1, rpoD1 and combined amino acid sequences deduced from rpoC1 and rpoD1 were not congruent. In this study, we showed the correlation among phylogenetic relationships of 16S rDNA, gyrB, rpoC1 and rpoD1 genes. The phylogenetic trees based on the sequences of 16S rDNA, GyrB, rpoC1, rpoD1 and the combined amino acid sequences deduced from rpoC1 and rpoD1 showed that the lateral gene transfer of rRNA might be suspected for Synechocystis sp. PCC 6803.  相似文献   

3.
4.
rpoB sequence analysis as a novel basis for bacterial identification   总被引:12,自引:0,他引:12  
Comparison of the sequences of conserved genes, most commonly those encoding 16S rRNA, is used for bacterial genotypic identification. Among some taxa, such as the Enterobacteriaceae, variation within this gene does not allow confident species identification. We investigated the usefulness of RNA polymerase beta-subunit encoding gene ( rpoB  ) sequences as an alternative tool for universal bacterial genotypic identification. We generated a database of partial rpoB for 14 Enterobacteriaceae species and then assessed the intra- and interspecies divergence between the rpoB and the 16S rRNA genes by pairwise comparisons. We found that levels of divergence between the rpoB sequences of different strains were markedly higher than those between their 16S rRNA genes. This higher discriminatory power was further confirmed by assigning 20 blindly selected clinical isolates to the correct enteric species on the basis of rpoB sequence comparison. Comparison of rpoB sequences from Enterobacteriaceae was also used as the basis for their phylogenetic analysis and demonstrated the genus Klebsiella to be polyphyletic. The trees obtained with rpoB were more compatible with the currently accepted classification of Enterobacteriaceae than those obtained with 16S rRNA. These data indicate that rpoB is a powerful identification tool, which may be useful for universal bacterial identification.  相似文献   

5.
A specific PCR system based on the gene encoding the RNA polymerase beta subunit, rpoB, was developed for amplification and denaturing gradient gel electrophoresis (DGGE) fingerprinting of Paenibacillus communities in environmental samples. This gene has been previously proven to be a powerful identification tool for the discrimination of species within the genus Paenibacillus and could avoid the limitations of 16S rRNA-based phylogenetic analysis. Initially, the PCR system based on universal rpoB primers were used to amplify DNAs of different Paenibacillus species. A new reverse primer (rpoBPAEN) was further designed based on an insertion of six nucleotides in the Paenibacillus sequences analyzed. This semi-nested PCR system was evaluated for specificity using DNAs isolated from 27 Paenibacillus species belonging to different 16S rRNA-based phylogenetic groups and seven non-Paenibacillus species. The non-Paenibacillus species were not amplified using this PCR approach and one group of Paenibacillus species consisting of strains without the six-base insert also were not amplified; these latter strains were found to be distinct based on 16S rRNA gene phylogeny. In addition, a clone library was generated from the rpoB fragments amplified from two Brazilian soil types (Cerrado and Forest) and all 62 clones sequenced were closely related to one of the 22 sequences from Paenibacillus previously obtained in this study. To assess the diversity of Paenibacillus species in Cerrado and Forest soils and in the rhizosphere of different cultivars of maize, a PCR-DGGE system was used. The Paenibacillus DGGE fingerprints showed a clear distinction between communities of Paenibacillus in Forest and Cerrado soils and rhizosphere samples clustered along Cerrado soil. Profiles of cultivars CMS22 and CMS36 clustered together, with only 53% of similarity to CMS11 and CMS04. The results presented here demonstrate the potential use of the rpoB-based Paenibacillus-specific PCR-DGGE method for studying the diversity of Paenibacillus populations in natural environments.  相似文献   

6.
Molecular phylogenetic trees were reconstructed from nucleotide sequences of nifH and 16S rDNA for Frankia and of rbcL for actinorhizal plants. Comparison of Frankia phylogenetic trees reconstructed using nifH and 16S rDNA sequences indicated that subgroupings of both trees correspond with each other in terms of plant origins of Frankia strains. The results suggested that 16S rDNAs can be utilized for coevolution analysis of actinorhizal symbioses. Frankia and plant phylogenetic trees reconstructed using 16S rDNA and rbcL sequences were compared. The comparison by tree matching and likelihood ratio tests indicated that although branching orders of both trees do not strictly correspond with each other, subgroupings of Frankia and their host plants correspond with each other in terms of symbiotic partnership. Estimated divergence times among Frankia and plant clades indicated that Frankia clades diverged more recently than plant clades. Taken together, actinorhizal symbioses originated more than three times after the four plant clades diverged.  相似文献   

7.
The identity of Frankia strains from nodules of Myrica gale, Alnus incana subsp. rugosa, and Shepherdia canadensis was determined for a natural stand on a lake shore sand dune in Wisconsin, where the three actinorhizal plant species were growing in close proximity, and from two additional stands with M. gale as the sole actinorhizal component. Unisolated strains were compared by their 16S ribosomal DNA (rDNA) restriction patterns using a direct PCR amplification protocol on nodules. Phylogenetic relationships among nodular Frankia strains were analyzed by comparing complete 16S rDNA sequences of study and reference strains. Where the three actinorhizal species occurred together, each host species was nodulated by a different phylogenetic group of Frankia strains. M. gale strains from all three sites belonged to an Alnus-Casuarina group, closely related to Frankia alni representative strains, and were low in diversity for a host genus considered promiscuous with respect to Frankia microsymbiont genotype. Frankia strains from A. incana nodules were also within the Alnus-Casuarina cluster, distinct from Frankia strains of M. gale nodules at the mixed actinorhizal site but not from Frankia strains from two M. gale nodules at a second site in Wisconsin. Frankia strains from nodules of S. canadensis belonged to a divergent subset of a cluster of Elaeagnaceae-infective strains and exhibited a high degree of diversity. The three closely related local Frankia populations in Myrica nodules could be distinguished from one another using our approach. In addition to geographic separation and host selectivity for Frankia microsymbionts, edaphic factors such as soil moisture and organic matter content, which varied among locales, may account for differences in Frankia populations found in Myrica nodules.  相似文献   

8.
In a previous study, we found that the phylogenetic analysis of partial rpoB sequences can be used effectively to phylogenetically differentiate Streptomyces spp. [B.J. Kim, C.J. Kim, J. Chun, Y.H. Koh, S.H. Lee, J.W. Hyun, C.Y. Cha, Y.H. Kook, Phylogenetic analysis of the genera Streptomyces and Kitasatospora based on partial RNA polymerase beta-subunit gene (rpoB) sequences, Int. J. Syst. Evol. Microbiol. 54 (2004) 593-598]. In the present study, we analyzed the partial rpoB gene sequences of 19 reference Streptomyces strains associated with potato scab. Furthermore, to empirically confirm the usefulness of rpoB gene analysis for the phylogenetic differentiation of Streptomyces spp., we applied the proposed system to 27 potato scab isolates obtained from the Korean provinces of Jeju-do and Kangwon-do. Phylogenetic relationships among these isolates using the devised rpoB gene-based methods were generally similar to those reported for 16S rRNA gene-based analysis. Isolates from potato scab lesion in Korea were also clearly differentiated into their phylogenetic groups by this method. In addition, the deduced RpoB amino acid sequences were also found to be useful for differentiating these strains. Our data demonstrate that the rpoB gene-based method can be used as a means of complementing other genetic methods such as 16S rRNA gene analysis or DNA-DNA hybridization to phylogenetically differentiate potato scab related Streptomyces spp.  相似文献   

9.
10.
AIM: To avoid the limitations of 16S rRNA-based phylogenetic analysis for Paenibacillus species, the usefulness of the RNA polymerase beta-subunit encoding gene (rpoB) was investigated as an alternative to the 16S rRNA gene for taxonomic studies. METHODS AND RESULTS: Partial rpoB sequences were generated for the type strains of eight nitrogen-fixing Paenibacillus species. The presence of only one copy of rpoB in the genome of P. graminis strain RSA19(T) was demonstrated by denaturing gradient gel electrophoresis and hybridization assays. A comparative analysis of the sequences of the 16S rRNA and rpoB genes was performed and the eight species showed between 91.6-99.1% (16S rRNA) and 77.9-97.3% (rpoB) similarity, allowing a more accurate discrimination between the different species using the rpoB gene. Finally, 24 isolates from the rhizosphere of different cultivars of maize previously identified as Paenibacillus spp. were assigned correctly to one of the nitrogen-fixing species. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The data obtained in this study indicate that rpoB is a powerful identification tool, which can be used for the correct discrimination of the nitrogen-fixing species of agricultural and industrial importance within the genus Paenibacillus.  相似文献   

11.
Based on partial 16S sequences, we previously described a novel group of nonsymbiotic, acetylene reduction activity-positive actinomycetes which were isolated from surface-sterilized roots of Casuarina equisetifolia growing in Mexico. An amplified rRNA restriction analysis confirmed that these actinomycetes are distinct from Frankia, a finding substantiated by a 16S rRNA gene phylogenetic analysis of two of the Mexican isolates. Further support for these actinomycetes being separate from Frankia comes from the very low DNA-DNA homology that was found. Nevertheless, the Mexican isolates may be diazotrophs based not only on their ability to grow in N-free medium and reduce acetylene to ethylene but also on the results from (15)N isotope dilution analysis and the finding that a nifH gene was PCR amplified. A comparison of the nifH sequences from the various isolates showed that they are closely related to nifH from Frankia; the similarity was 84 to 98% depending on the host specificity group. An analysis of complete 16S rRNA gene sequences demonstrated that the two strains analyzed in detail are most closely related to actinobacteria in the Thermomonosporaceae and the Micromonosporaceae.  相似文献   

12.
Frankia strains symbiotic with Ceanothus present an interesting opportunity to study the patterns and causes of Frankia diversity and distribution within a particular host infectivity group. We intensively sampled Frankia from nodules on Ceanothus plants along an elevational gradient in the southern Sierra Nevada of California, and we also collected nodules from a wider host taxonomic and geographic range throughout California. The two sampling scales comprised 36 samples from eight species of Ceanothus representing six of the seven major biogeographic regions in and around California. The primary objective of this study was to use a quantitative model to test the relative importance of geographic separation, host specificity, and environment in influencing the identity of Ceanothus Frankia symbionts as determined by ribosomal DNA sequence data. At both sampling scales, Frankia strains symbiotic with Ceanothus exhibited a high degree of genetic similarity. Frankia strains symbiotic with Chamaebatia (Rosaceae) were within the same clade as several Ceanothus symbionts. Results from a classification and regression tree model used to quantitatively explain Frankia phylogenetic groupings demonstrated that the only significant variable in distinguishing between phylogenetic groups at the more local sampling scale was host species. At the regional scale, Frankia phylogenetic groupings were explained by host species and the biogeographic province of sample collection. We did not find any significant correspondence between Frankia and Ceanothus phylogenies indicative of coevolution, but we concluded that the identity of Frankia strains inhabiting Ceanothus nodules may involve interactions between host species specificity and geographic isolation.  相似文献   

13.
Our understanding of the actinorhizal symbiosis, in particular of the Frankia-Ceanothus association, has been hampered by the failure to isolate infective strains in pure culture. Recently, the polymerase chain reaction (PCR) has been utilized to amplify regions of the Frankia genome, allowing analysis of the microsymbiont genome without first isolating the microbe in pure culture. Root nodules were collected from six Ceanothus spp. common to the coastal regions of the Santa Monica Mountains of southern California. Individual lobes were surface-sterilized, total DNA was extracted and amplified using prokaryotic-specific primers. To assess the genetic diversity of Frankia endophytes in the population studied, the BOX primer was used to generate genomic fingerprints of prokaryotic nodule inhabitants using rep-PCR. Fingerprint patterns fell into twelve distinct groups indicating the occurrence of genetic diversity of Frankia in the nodules sampled. DNA extracts of individual lobes that gave distinct BOX-PCR fingerprints were also amplified by PCR using primers directed against conserved regions of the 16S ribosomal RNA gene. The nucleotide sequences of the PCR products were determined and aligned with the corresponding region from other taxa for phylogenetic analysis. The sequences from Ceanothus nodules share a common ancestor to that of the Elaeagnus –infective strains.  相似文献   

14.
15.
The presence of Frankia strains in soil samples collected from northern areas of Pakistan was detected by inoculating Coriaria nepalensis and Datisca cannabina plants. The abundance of compatible Frankia strains in some areas was indicated by profuse nodulation of the host plants, whereas soil samples from other localities failed to result in nodulation. An oligonucleotide probe (COR/DAT) directed against the 16S rRNA gene of the endophytes of Coriaria and Datisca spp. that did not cross-react with the RNA gene of Frankia strains isolated from other hosts was developed. Genetic diversity among Frankia strains nodulating D. cannabina was determined by sequence analysis of the partial 16S rRNA gene amplified from nodules induced by soil samples from different localities by PCR. Four types of Frankia sequences and one non-Frankia sequence were detected by hybridization with a Frankia genus probe and the COR/DAT probe as well as by sequence analysis of the cloned PCR products.  相似文献   

16.
Repeated attempts at isolating the Frankia endophyte of Coriaria spp. have not yielded infective microbial cultures that could fulfil Koch's postulates. In order to circumvent the critical isolation step, nodule endophytes of Coriaria were characterized directly by means of specific amplification of nodule DNA (PCR) followed by sequencing of part of the 16S rDNA gene. Three closely related sequences were obtained from nodules originating from France, Mexico and New Zealand, containing unique sequences different from all other Frankia strains characterized so far. The sequences obtained were closest (with 5 or 6 substitutions) to those of Frankia alni and those of Casuarina-infective Frankia strains, respectively. Two nucleotides unique to the Coriaria endophyte sequences were used to define specific primers, resulting in a hybridization test that could discriminate between Frankia DNAs originating from Coriaria nodules and those recovered from all cultured Frankia strains tested. The endophytes of Coriaria thus appear to form a distinct Frankia lineage.  相似文献   

17.
The pectinolytic species Pseudomonas viridiflava has a wide host range among plants, causing foliar and stem necrotic lesions and basal stem and root rots. However, little is known about the molecular evolution of this species. In this study we investigated the intraspecies genetic variation of P. viridiflava amongst local (Cretan), as well as international isolates of the pathogen. The genetic and phenotypic variability were investigated by molecular fingerprinting (rep-PCR) and partial sequencing of three housekeeping genes (gyrB, rpoD and rpoB), and by biochemical and pathogenicity profiling. The biochemical tests and pathogenicity profiling did not reveal any variability among the isolates studied. However, the molecular fingerprinting patterns and housekeeping gene sequences clearly differentiated them. In a broader phylogenetic comparison of housekeeping gene sequences deposited in GenBank, significant genetic variability at the molecular level was found between isolates of P. viridiflava originated from different host species as well as among isolates from the same host. Our results provide a basis for more comprehensive understanding of the biology, sources and shifts in genetic diversity and evolution of P. viridiflava populations and should support the development of molecular identification tools and epidemiological studies in diseases caused by this species.  相似文献   

18.
Symbioses between the root nodule-forming, nitrogen-fixing actinomycete Frankia and its angiospermous host plants are important in the nitrogen economies of numerous terrestrial ecosystems. Molecular characterization of Frankia strains using polymerase chain reaction/restriction fragment length polymorphism (PCR/RFLP) analyses of the 16S rRNA-ITS gene and of the nifD-nifK spacer was conducted directly on root nodules collected worldwide from Casuarina and Allocasuarina trees. In their native habitats in Australia, host species contained seven distinctive sets of Frankia in seven different molecular phylogenetic groups. Where Casuarina and Allocasuarina trees are newly planted outside Australia, they do not normally nodulate unless Frankia is introduced with the host seedling. Nodules from Casuarina trees introduced outside Australia over the last two centuries were found to contain Frankia from only one of the seven phylogenetic groups associated with the host genus Casuarina in Australia. The phylogenetic group of Frankia found in Casuarina and Allocasuarina trees introduced outside Australia is the only group that has yielded isolates in pure culture, suggesting a greater ability to survive independently of a host. Furthermore, the Frankia species in this group are able to nodulate a wider range of host species than those in the other six groups. In baiting studies, Casuarina spp. are compatible with more Frankia microsymbiont groups than Allocasuarina host spp. adapted to drier soil conditions, and C. equisetifolia has broader microsymbiont compatibility than other Casuarina spp. Some Frankia associated with the nodular rhizosphere and rhizoplan, but not with the nodular tissue, of Australian hosts were able to nodulate cosmopolitan Myrica plants that have broad microsymbiont compatibility and, hence, are a potential host of Casuarinaceae-infective Frankia outside the hosts' native range. The results are consistent with the idea that Frankia symbiotic promiscuity and ease of isolation on organic substrates, suggesting saprophytic potential, are associated with increased microsymbiont ability to disperse and adapt to diverse new environments, and that both genetics and environment determine a host's nodular microsymbiont.  相似文献   

19.
Conventional classification of the species in the family Mycoplasmataceae is mainly based on phenotypic criteria, which are complicated, can be difficult to measure, and have the potential to be hampered by phenotypic deviations among the isolates. The number of biochemical reactions suitable for phenotypic characterization of the Mycoplasmataceae is also very limited and therefore the strategy for the final identification of the Mycoplasmataceae species is based on comparative serological results. However, serological testing of the Mycoplasmataceae species requires a performance panel of hyperimmune sera which contains anti-serum to each known species of the family, a high level of technical expertise, and can only be properly performed by mycoplasma-reference laboratories. In addition, the existence of uncultivated and fastidious Mycoplasmataceae species/isolates in clinical materials significantly complicates, or even makes impossible, the application of conventional bacteriological tests. The analysis of available genetic markers is an additional approach for the primary identification and phylogenetic classification of cultivable species and uncultivable or fastidious organisms in standard microbiological laboratories. The partial nucleotide sequences of the RNA polymerase β-subunit gene (rpoB) and the 16S-23S rRNA intergenic transcribed spacer (ITS) were determined for all known type strains and the available non-type strains of the Mycoplasmataceae species. In addition to the available 16S rRNA gene data, the ITS and rpoB sequences were used to infer phylogenetic relationships among these species and to enable identification of the Mycoplasmataceae isolates to the species level. The comparison of the ITS and rpoB phylogenetic trees with the 16S rRNA reference phylogenetic tree revealed a similar clustering patterns for the Mycoplasmataceae species, with minor discrepancies for a few species that demonstrated higher divergence of their ITS and rpoB in comparison to their neighbor species. Overall, our results demonstrated that the ITS and rpoB gene could be useful complementary phylogenetic markers to infer phylogenetic relationships among the Mycoplasmataceae species and provide useful background information for the choice of appropriate metabolic and serological tests for the final classification of isolates. In summary, three-target sequence analysis, which includes the ITS, rpoB, and 16S rRNA genes, was demonstrated to be a reliable and useful taxonomic tool for the species differentiation within the family Mycoplasmataceae based on their phylogenetic relatedness and pairwise sequence similarities. We believe that this approach might also become a valuable tool for routine analysis and primary identification of new isolates in medical and veterinary microbiological laboratories.  相似文献   

20.
Bacteria of the genus Frankia are mycelium-forming actinomycetes that are found as nitrogen-fixing facultative symbionts of actinorhizal plants. Although soil-dwelling actinomycetes are well-known producers of bioactive compounds, the genus Frankia has largely gone uninvestigated for this potential. Bioinformatic analysis of the genome sequences of Frankia strains ACN14a, CcI3, and EAN1pec revealed an unexpected number of secondary metabolic biosynthesis gene clusters. Our analysis led to the identification of at least 65 biosynthetic gene clusters, the vast majority of which appear to be unique and for which products have not been observed or characterized. More than 25 secondary metabolite structures or structure fragments were predicted, and these are expected to include cyclic peptides, siderophores, pigments, signaling molecules, and specialized lipids. Outside the hopanoid gene locus, no cluster could be convincingly demonstrated to be responsible for the few secondary metabolites previously isolated from other Frankia strains. Few clusters were shared among the three species, demonstrating species-specific biosynthetic diversity. Proteomic analysis of Frankia sp. strains CcI3 and EAN1pec showed that significant and diverse secondary metabolic activity was expressed in laboratory cultures. In addition, several prominent signals in the mass range of peptide natural products were observed in Frankia sp. CcI3 by intact-cell matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). This work supports the value of bioinformatic investigation in natural products biosynthesis using genomic information and presents a clear roadmap for natural products discovery in the Frankia genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号