首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to investigate the main bioenergetics and neuromuscular determinants of the time to exhaustion (T(lim)) at the velocity corresponding to maximal oxygen uptake in recreational long-distance runners. Twenty runners performed the following tests on 5 different days: (a) maximal incremental treadmill test, (b) 2 submaximal tests to determine running economy and vertical stiffness, (c) exhaustive test to measured the T(lim), (d) maximum dynamic strength test, and (e) muscle power production test. Aerobic and anaerobic energy contributions during the T(lim) test were also estimated. The stepwise multiple regression method selected 3 independent variables to explain T(lim) variance. Total energy production explained 84.1% of the shared variance (p = 0.001), whereas peak oxygen uptake (V(O2)peak) measured during T(lim)and lower limb muscle power ability accounted for the additional 10% of the shared variance (p = 0.014). These data suggest that the total energy production, V(O2)peak, and lower limb muscle power ability are the main physiological and neuromuscular determinants of T(lim)in recreational long-distance runners.  相似文献   

2.
The purpose of this study was to investigate the pacing pattern and associated physiological effects in competitive cyclists who performed a 30-minute maximal cycling test. Measurements included oxygen uptake (V O2), heart rate (HR), blood lactate concentration (BLC), rating of perceived exertion (RPE), and work rate in watts. Twelve well-trained amateur cyclists (seven men and five women) whose mean age was 32.4 +/- 8.6 years participated in this study. They performed a 30-minute self-paced maximal cycling test using their own performance road bike attached to a CompuTrainer Pro, which allowed the assessment of work rate (W). During the test, work rate, V O2, and HR were measured every 30 seconds. Subjects' BLC and RPE were obtained every 5 minutes. Results indicate that no significant differences existed across three 10-minute periods for work rate, HR, or V O2. However, RPE at 30 minutes was significantly greater than RPE at 10 and 20 minutes (both p < 0.05). The RPE at 20 minutes was also greater than the RPE at 10 minutes (p < 0.01). Work rate remained relatively constant, with minimal fluctuations occurring throughout the test except for a surge during the final 30 seconds of the test. The associated V O2 was fairly constant over time, whereas HR rose linearly and gradually. It was concluded that pacing in a 30-minute maximal exercise bout performed in the laboratory in experienced cyclists varies minimally until the last 30 seconds. Knowledge of pacing strategy and the linked physiological responses may be helpful to exercise scientists in optimizing performance in the endurance athlete.  相似文献   

3.
Critical power (CP) is a theoretical workload representative of an athlete's maximal sustainable pace. Recent research has validated a 3-minute all-out test on a cycle ergometer for determining CP; however, few studies have investigated the sustainability of CP using this test. The purpose of this study was to determine the sustainability of CP established during the 3-minute test and the determinants of sustainability. A group of elite cyclists (N = 21) performed a VO2max test, 3-minute all-out test, and a time to exhaustion (TTE) trial at CP on 3 different days separated by at least 24 hours. Expired gases were collected during all trials and analyzed for VO2 and VCO2. Heart rate was measured by telemetry. Multiple regression was used to determine predictors of sustainability with significance predetermined at p < 0.05. VO2max was measured at 58.9 ± 5.6 ml·kg(-1)·min(-1), ventilation breakpoint at 44.9 ± 5.7 ml·kg(-1)·min(-1) (75% VO2max), and maximum heart rate at 179 ± 10 b·min(-1). Peak power (PP) in the 3-minute all-out test was measured at 738 ± 170 W, and CP was determined at 305 ± 32 W or 79% of VO2max. The VO2 at CP was 55.4 ± 6.9 ml·kg(-1)·min(-1), representing 94% of measured VO2max. The mean TTE at CP was 14.79 ± 8.38 minutes. The difference score of PP - CP significantly predicted TTE (r = 0.65, p < 0.05). No other measured variables contributed to this prediction. Based on sustainability, these data suggest that the 3-minute all-out test may overestimate CP in elite cyclists, which could lead to overtraining if CP determined with this test is used to identify training intensities.  相似文献   

4.
The purpose of this study was to determine the validity of using the electromyography (EMG) signal as a noninvasive method of estimating the lactate threshold (LT) power output in recreational cyclists. Using an electromagnetic bicycle ergometer and constant pedaling cadence of 80 rpm, 24 recreational cyclists performed an incremental exercise protocol that consisted of stepwise increases in power output of 25 W every 3 min until exhaustion. The EMG signal was recorded from the right vastus lateralis (VL) and right rectus femoris (RF) throughout the test. Blood samples were taken from the fingertip every 3 min. The LT was determined by examining the relation between the lactate concentration and the power output using a log-log transformation model. The root mean square (RMS) value from the EMG signal was calculated for every 1-second non-superimposing window. Sets of pairs of straight regression lines were plotted and the corresponding determination coefficients (R(2)) were calculated. The intersection point of the pair of lines with the highest R(2) product was chosen to represent the EMG threshold (EMGT). The results showed that the correlation coefficients (r) between EMGT and LT were significant (p < 0.01) and high for the VL (r = 0.826) and RF (r = 0.872). The RF and VL muscles showed similar behavior during the maximal incremental test and the EMGT and LT power output were equivalent for both muscles. The validity of using EMG to estimate the LT power output in recreational cyclists was confirmed.  相似文献   

5.
The purpose of this study was to investigate the effects of carbohydrate ingestion on force output and time to exhaustion using single leg static contractions superimposed with brief periods of electromyostimulation. Six trained male subjects participated in a randomized, counterbalanced, double-blind study. The subjects were randomly assigned to placebo (PL) or carbohydrate (CHO). The subjects in CHO consumed 1 g of carbohydrate per kilogram of body mass loading dose and 0.17 g of carbohydrate per kilogram of body mass every 6 minutes during the exercise protocol. The PL received an equal volume of a solution made of saccharin and aspartame. The exercise protocol consisted of repeated 20-second static contractions of quadriceps muscle at 50% maximal voluntary contraction followed by 40-second rest until failure occurred. Importantly, the force output during quadriceps maximal voluntary contraction strength with superimposed electromyostimulation was measured in the beginning and every 5 minutes during the last 3 seconds of static contractions throughout the exercise protocol. Venous blood samples were taken preexercise, immediately postexercise, and at 5 minutes postexercise and analyzed for blood lactate. Our results indicate that time to exhaustion (PL = 16.0 ± 8.1 minutes; CHO = 29.0 ± 13.1 minutes) and force output (PL = 3,638.7 ± 524.5 N; CHO = 5,540.1 ± 726.1 N) were significantly higher (p < 0.05) in CHO compared with that in PL. Data suggest that carbohydrate ingestion before and during static muscle contractions can increase force output and increase time to exhaustion. Therefore, our data suggest that carbohydrate supplementation before and during resistance exercise might help increase the training volume of athletes.  相似文献   

6.
The aim of this study was to examine the effect of aging and training status on ventilatory response during incremental cycling exercise. Eight young (24 ± 5 years) and 8 older (64 ± 3 years) competitive cyclists together with 8 young (27 ± 4 years) and 8 older (63 ± 2 years) untrained individuals underwent a continuous incremental cycling test to exhaustion to determine ventilatory threshold (VT), respiratory compensation point (RCP), and maximal oxygen uptake (VO?max). In addition, the isocapnic buffering (IB) phase was calculated together with the hypocapnic hyperventilation. Ventilatory threshold occurred at similar relative exercise intensities in all groups, whereas RCP was recorded at higher intensities in young and older cyclists compared to the untrained subjects. The IB phase, reported as the difference between VT and RCP and expressed either in absolute (ml·min?1·kg?1 VO?) or in relative terms, was greater (p < 0.01) in both young and older trained cyclists than in untrained subjects, who were also characterized by a lower exercise capacity. Isocapnic buffering was particularly small in the older untrained volunteers. Although young untrained and older trained subjects had a similar level of VO?max, older athletes exhibited a larger IB. In addition, a higher absolute but similar relative IB was observed in young vs. older cyclists, despite a higher VO?max in the former. In conclusion, the present study shows that aging is associated with a reduction of the IB phase recorded during an incremental exercise test. Moreover, endurance training induces adaptations that result in an enlargement of the IB phase independent of age. This information can be used for the characterization and monitoring of the physiological adaptations induced by endurance training.  相似文献   

7.
The purpose of this study was to investigate the effects of isocaloric carbohydrate (CHO) and carbohydrate-protein (CHO-Pro) supplements on time to exhaustion. Eleven moderately aerobically fit adults (V[Combining Dot Above]O2max= 48.3 ± 6.5 ml·kg·min) performed a maximal cycle ergometer test for the determination of V[Combining Dot Above]O2max. At least 72 hours later, the participants performed a time-to-exhaustion test at a power output equivalent to the power output when subjects were at 75% of their V[Combining Dot Above]O2max. Either the CHO or the CHO-Pro supplement was administered at 0, 30, 60, 90, and 120 minutes after this test. After 3 hours of recovery and supplement ingestion, a second time-to-exhaustion test was performed. This testing protocol was repeated for the third visit, but the supplement not given during the second visit was administered. The results indicated that there was no significant difference in time to exhaustion after isocaloric CHO (pretest 22.4 ± 2.84 minutes, posttest 25.4 ± 4.45 minutes) and CHO-Pro (pretest 22.3 ± 3.46 minutes, posttest 24.0 ± 5.08 minutes) supplementation. Carbohydrate and CHO-Pro ingestion after exercise appear to have similar effects on short-term recovery.  相似文献   

8.
The aim of the study was to compare time spent at a high percentage of VO2max (>90% of VO2max) (ts90%), time to achieve 90% of VO2max (ta90%), and time to exhaustion (TTE) for exercise in the severe intensity domain in children and adults. Fifteen prepubertal boys (10.3 ± 0.9 years) and 15 men (23.5 ± 3.6 years) performed a maximal graded exercise to determine VO2max, maximal aerobic power (MAP) and power at ventilatory threshold (PVTh). Then, they performed 4 constant load exercises in a random order at PVTh plus 50 and 75% of the difference between MAP and PVTh (PΔ50 and PΔ75) and 100 and 110% of MAP (P100 and P110). VO2max was continuously monitored. The P110 test was used to determine maximal accumulated oxygen deficit (MAOD). No significant difference was found in ta90% between children and adults. ts90% and TTE were not significantly different between children and adults for the exercises at PΔ50 and PΔ75. However, ts90% and TTE during P100 (p < 0.05 and p < 0.01, respectively) and P110 (p < 0.001) exercises were significantly shorter in children. Children had a significantly lower MAOD than adults (34.3 ± 9.4 ml · kg vs. 53.6 ± 11.1 ml · kg). A positive relationship (p < 0.05) was obtained between MAOD and TTE values during the P100 test in children. This study showed that only for intensities at, or higher than MAP, lower ts90% in children was linked to a reduced TTE, compared to adults. Shorter TTE in children can partly be explained by a lower anaerobic capacity (MAOD). These results give precious information about exercise intensity ranges that could be used in children's training sessions. Moreover, they highlight the implication of both aerobic and anaerobic processes in endurance performances in both populations.  相似文献   

9.
In several recent studies, athletes experienced substantial gains in sprint and endurance performance when explosive training or high-intensity interval training was added in the noncompetitive phase of a season. Here we report the effect of combining these 2 types of training on performance in the competitive phase. We randomized 18 road cyclists to an experimental (n = 9) or control (n = 9) group for 4-5 weeks of training. The experimental group replaced part of their usual training with twelve 30-minute sessions consisting of 3 sets of explosive single-leg jumps (20 for each leg) alternating with 3 sets of high-resistance cycling sprints (5 x 30 seconds at 60-70 min(-1) with 30-second recoveries between repetitions). Performance measures, obtained over 2-3 days on a cycle ergometer before and after the intervention, were mean power in a 1- and 4-km time trial, peak power in an incremental test, and lactate-profile power and oxygen cost determined from 2 fixed submaximal workloads. The control group showed little mean change in performance. Power output sampled in the training sprints of the experimental group indicated a plateau in the training effect after 8-12 sessions. Relative to the control group, the mean changes (+/-90% confidence limits) in the experimental group were: 1-km power, 8.7% (+/-2.5%); 4-km power, 8.1% (+/-4.1%); peak power, 6.8% (+/-3.6); lactate-profile power, 3.7% (+/-4.8%); and oxygen cost, -3.0% (+/-2.6%). Individual responses to the training were apparent only for 4-km and lactate-profile power (standard deviations of 2.5% and 2.8%, respectively). The addition of explosive training and high-resistance interval training to the programs of already well-trained cyclists produces major gains in sprint and endurance performance, partly through improvements in exercise efficiency and anaerobic threshold.  相似文献   

10.
The purpose of this investigation was to determine the effects of 2.5 hours of cycling with and without carbohydrate supplementation on gross efficiency (GE). Trained cyclists (N = 15) were tested for V(.-)O2max (53.6 + 2.2 ml x kg(-1) x min(-1)) and lactate threshold during incremental tests to exhaustion. On 2 separate visits, cyclists performed 2.5 hours of cycling on an indoor trainer. A carbohydrate (C) or placebo (P) beverage was randomly provided and counterbalanced for each of the trials. Gross efficiency, cycling economy, power output, V(.-)O2, lactate, and blood glucose were measured every 20 minutes during the 2.5-hour ride. Muscle glycogen was measured immediately before and after the ride from the vastus lateralis. Results indicated that power output and V(.-)O2 decreased over time (p < 0.05) but were not different between trials. Relative GE and cycling economy during C were greater than P at 40 and 150 minutes (p < 0.05). Blood glucose significantly decreased in P and was lower than C at all time points (p < 0.05). Respiratory exchange ratio decreased over time in both trials, with a significant treatment effect at 40 and 150 minutes (p < 0.05). Muscle glycogen decreased by 65% during both conditions (p < 0.05) but demonstrated no treatment effect. We conclude that carbohydrate supplementation during 2.5 hours of cycling attenuated the decrease in GE possibly by maintaining blood glucose levels. This suggests that the positive effect of carbohydrate supplementation on endurance performance may be through the maintenance of metabolic efficiency.  相似文献   

11.
New technology allows cyclists to train via power output (PO) in addition to heart rate (HR). For those athletes undertaking seasonal laboratory testing (e.g., Vo(2), lactate threshold), it is imperative that athletes be able to directly apply this information to their training device. We examined the reliability of a standardized laboratory ergometer (Lode Excalibur Sport) and its applicability to an electromagnetically braked ergometer (Computrainer) in 2 phases. Phase I (n = 12) examined the reliability of the Lode. Phase II (n = 14) compared the Lode to the Computrainer using a randomized, counterbalance assignment. Following warm-up, each trial started at 100 W, progressing 50 W every 3 minutes to exhaustion. Outcomes were time-to-exhaustion (TTE), peak PO (W) (PO(peak)), peak HR (HR(peak)), and ventilatory (VT) and respiratory compensation (RCP) thresholds. We used a repeated measures analysis of variance (ANOVA), Tukey post hoc analysis, regression analysis, Bland-Altman plots, and coefficient of variation (CV) analysis for each variable. During phase I, we found no significant difference for any variable, minimal dispersion of Vo(2) during Bland-Altman analysis, and a low CV at each test stage (相似文献   

12.
We investigated the effect of gradual-elastic compression stockings (GCSs) on running economy (RE), kinematics, and performance in endurance runners. Sixteen endurance trained athletes (age: 34.73 ± 6.27 years; VO2max: 62.83 ± 9.03 ml·kg(-1)·min(-1); 38 minutes in 10 km; 1 hour 24 minutes in half marathon) performed in random order 4 bouts of 6 minutes at a recent half-marathon pace on a treadmill to evaluate RE with or without GCSs. Subsequently, 12 athletes were divided into 2 equal groups matched by their VO2max, and they performed a time limit test (T(lim)) on a treadmill at 105% of a recent 10-km pace with or without GCSs for evaluation of physiological responses and running kinematics. There were no significant differences in the RE test in all of the variables analyzed for the conditions, but a moderate reproducibility for some physiological responses was detected in the condition with GCSs. In the T(lim), the group that wore GCSs reached a lower % of maximum heart rate (HRmax) compared with the control group (96.00 ± 2.94 vs. 99.83 ± 0.40) (p = 0.01). Kinematics did not differ between conditions during the T(lim) (p > 0.05). There were improvement trends for time to fatigue (337 vs. 387 seconds; d = 0.32) and a lower VO2peak (≈53 vs. 62 ml·kg(-1)·min(-1); d = 1.19) that were detected with GCSs during the T(lim). These results indicate that GCSs reduce the % of HRmax reached during a test at competition pace. The lower reproducibility of the condition with GCSs perhaps suggests that athletes may possibly need an accommodation period for systematically experiencing the benefits of this garment, but this hypothesis should be further investigated.  相似文献   

13.
Electron transport layer (ETL) is a functional layer of great significance for boosting the power conversion efficiency (PCE) of perovskite solar cells (PSCs). To date, it is still a challenge to simultaneously reduce the surface defects and improve the crystallinity in ETLs during their low‐temperature processing. Here, a novel strategy for the mediation of in situ regrowth of SnO2 nanocrystal ETLs is reported: introduction of controlled trace amounts of surface absorbed water on the fluorinated tin oxide (FTO) or indium–tin oxide (ITO) surfaces of the substrates using ultraviolet ozone (UVO) pretreatment. The optimum amount of adsorbed water plays a key role in balancing the hydrolysis–condensation reactions during the structural evolution of SnO2 thin films. This new approach results in a full‐coverage SnO2 ETL with a desirable morphology and crystallinity for superior optical and electrical properties, as compared to the control SnO2 ETL without the UVO pretreatment. Finally, the rigid and flexible PSC devices based on the new SnO2 ETLs yield high PCEs of up to 20.5% and 17.5%, respectively.  相似文献   

14.
Despite its apparent relevance, there is no evidence supporting the importance of anaerobic metabolism in Olympic crosscountry mountain biking (XCO). The purpose of this study was to examine the correlation between XCO race time and performance indicators of anaerobic power. Ten XCO riders (age: 28 ± 5 years; weight: 68.7 ± 7.7 kg; height: 177.9 ± 7.4 cm; estimated body fat: 5.7 ± 2.8%; estimated ·VO?max: 68.4 ± 5.7 ml·kg?1·min?1) participating in the Lagos Mountain Bike Championship (Brazil) completed 2 separate testing sessions before the race. In the first session, after anthropometric assessments were performed, the cyclists completed a single 30-second Wingate (WIN) test and an intermittent tests consisting of 5 × 30-second WIN tests (50% of the single WIN load) with 30 seconds of recovery between trials. In the second session, the riders performed a maximal incremental test. A significant correlation was found between race time and maximal power on the 5× WIN test (r = -0.79, IC(95%) -0.94 to -0.32, p = 0.006) and the mean average power on the 5× WIN test normalized by body mass (r = -0.63, IC(95%) -0.90 to -0.01, p = 0.048). The finding of the study supports the use of anaerobic tests for assessing mountain bikers participating in XCO competitions and suggests that anaerobic power is an important determinant of performance.  相似文献   

15.
The electron transport layer (ETL) plays a fundamental role in perovskite solar cells. Recently, graphene‐based ETLs have been proved to be good candidate for scalable fabrication processes and to achieve higher carrier injection with respect to most commonly used ETLs. Here, the effects of different graphene‐based ETLs in sensitized methylammonium lead iodide (MAPI) solar cells are experimentally studied. By means of time‐integrated and picosecond time‐resolved photoluminescence techniques, the carrier recombination dynamics in MAPI films embedded in different ETLs is investigated. Using graphene doped mesoporous TiO2 (G+mTiO2) with the addition of a lithium‐neutralized graphene oxide (GO‐Li) interlayer as ETL, it is found find that the carrier collection efficiency is increased by about a factor two with respect to standard mTiO2. Taking advantage of the absorption coefficient dispersion, the MAPI layer morphology is probed, along the thickness, finding that the MAPI embedded in the ETL composed by G+mTiO2 plus GO‐Li brings to a very good crystalline quality of the MAPI layer with a trap density about one order of magnitude lower than that found with the other ETLs. In addition, this ETL freezes MAPI at the tetragonal phase, regardless of the temperature. Graphene‐based ETLs can open the way to significant improvement of perovskite solar cells.  相似文献   

16.
To test whether there is a regional difference in the exercise pressor reflex within a given muscle, we investigated the relationship between the inflection points of cardiovascular responses and muscle oxygenation during exercise. Seven subjects performed incremental exercise, which consisted of incremental 30-s static knee extensions, each separated by 30 s of recovery. The workload started at 5% maximal voluntary contraction (MVC) and increased by 5% MVC for each increment until exhaustion. Changes (Delta) in the concentrations (denoted by brackets) of oxygenated Hb (O2Hb) and deoxygenated Hb (HHb) were monitored in proximal and distal portions of the vastus lateralis by near-infrared spectroscopy. The inflection points of mean arterial pressure (MAP), calf vascular resistance (CVR), and muscle deoxygenation index (Delta[O2Hb-HHb]) were calculated as the intersection point of two regression equations obtained at lower and higher workloads. The inflection point of Delta[O2Hb-HHb] differed significantly between proximal and distal portions (28.5 +/- 3.0 vs. 39.5 +/- 3.0%MVC, P < 0.05). Linear regression analysis showed significant correlations between the inflection point of Delta[O2Hb-HHb] in the distal portion and MAP (r = 0.89; P < 0.01) and CVR (r = 0.89; P < 0.05), but no significant relationship between the inflection point in the proximal portion and MAP or CVR. These data show that the inflection point of muscle deoxygenation differs between proximal and distal portions within the vastus lateralis during incremental exercise and suggest that the distal portion of the vastus lateralis contributes more to the pressor response than does the proximal portion.  相似文献   

17.
We hypothesized that the maximum mechanical power outputs that can be maintained during all-out sprint cycling efforts lasting from a few seconds to several minutes can be accurately estimated from a single exponential time constant (k(cycle)) and two measurements on individual cyclists: the peak 3-s power output (P(mech max)) and the maximum mechanical power output that can be supported aerobically (P(aer)). Tests were conducted on seven subjects, four males and three females, on a stationary cycle ergometer at a pedal frequency of 100 rpm. Peak mechanical power output (P(mech max)) was the highest mean power output attained during a 3-s burst; the maximum power output supported aerobically (P(aer)) was determined from rates of oxygen uptake measured during a progressive, discontinuous cycling test to failure. Individual power output-duration relationships were determined from 13 to 16 all-out constant load sprints lasting from 5 to 350 s. In accordance with the above hypothesis, the power outputs measured during all-out sprinting efforts were estimated to within an average of 34 W or 6.6% from P(mech max), P(aer), and a single exponential constant (k(cycle) = 0.026 s(-1)) across a sixfold range of power outputs and a 70-fold range of sprint trial durations (R2 = 0.96 vs. identity, n = 105; range: 180 to 1,136 W). Duration-dependent decrements in sprint cycling power outputs were two times greater than those previously identified for sprint running speed (k(run) = 0.013 s(-1)). When related to the respective times of pedal and ground force application rather than total sprint time, decrements in sprint cycling and running performance followed the same time course (k = 0.054 s(-1)). We conclude that the duration-dependent decrements in sprinting performance are set by the fractional duration of the relevant muscular contractions.  相似文献   

18.
We investigated the effects of carbohydrate ingestion during recovery from high-intensity exercise on subsequent high-intensity exercise in trained cyclists. Aerobic power was determined, and the competitive cyclists (N = 7) were familiarized with the 100-kJ test protocol (100 KJ-TEST). The subjects performed a first 100 KJ-TEST (RIDE-1), ingested 0.7 g.(kg body mass)(-1) of Gatorlode (CHO) or placebo (PLC), rested for 60 minutes, and then performed a second 100 KJ-TEST (RIDE-2). Blood samples taken before (PRE-1) and after (POST-1) RIDE-1 and before (PRE-2) and after (POST-2) RIDE-2 were analyzed for plasma glucose ([glucose]), lactate, and nonesterified fatty acids ([NEFA]). No significant differences (p > 0.05) were observed between treatments in time to complete RIDE-1 (CHO = 270.3 +/- 29.0 seconds; PLC = 269.9 +/- 33.0 seconds) and RIDE-2 (CHO = 271.7 +/- 26.6 seconds; PLC = 275.3 +/- 30.6 seconds). Plasma [glucose] significantly decreased during the 60-minute recovery for PLC. There was an interaction effect for [NEFA] during recovery, with [NEFA] increasing for PLC and decreasing for CHO. Carbohydrate ingestion after maximal exercise does not appear to influence subsequent short-duration maximal effort exercise in competitive cyclists but does alter plasma [glucose] and [NEFA] relative to a PLC condition.  相似文献   

19.
Solutions containing multiple carbohydrates utilizing different intestinal transporters (glucose and fructose) show enhanced absorption, oxidation, and performance compared with single-carbohydrate solutions, but the impact of the ratio of these carbohydrates on outcomes is unknown. In a randomized double-blind crossover, 10 cyclists rode 150 min at 50% peak power, then performed an incremental test to exhaustion, while ingesting artificially sweetened water or one of three carbohydrate-salt solutions comprising fructose and maltodextrin in the respective following concentrations: 4.5 and 9% (0.5-Ratio), 6 and 7.5% (0.8-Ratio), and 7.5 and 6% (1.25-Ratio). The carbohydrates were ingested at 1.8 g/min and naturally (13)C-enriched to permit evaluation of oxidation rate by mass spectrometry and indirect calorimetry. Mean exogenous carbohydrate oxidation rates were 1.04, 1.14, and 1.05 g/min (coefficient of variation 20%) in 0.5-, 0.8-, and 1.25-Ratios, respectively, representing likely small increases in 0.8-Ratio of 11% (90% confidence limits; ± 4%) and 10% (± 4%) relative to 0.5- and 1.25-Ratios, respectively. Comparisons of fat and total and endogenous carbohydrate oxidation rates between solutions were unclear. Relative to 0.5-Ratio, there were moderate improvements to peak power with 0.8- (3.6%; 99% confidence limits ± 3.5%) and 1.25-Ratio (3.0%; ± 3.7%) but unclear with water (0.4%; ± 4.4%). Increases in stomach fullness, abdominal cramping, and nausea were lowest with the 0.8- followed by the 1.25-Ratio solution. At high carbohydrate-ingestion rate, greater benefits to endurance performance may result from ingestion of 0.8- to 1.25-Ratio fructose-maltodextrin solutions. Small perceptible improvements in gut comfort favor the 0.8-Ratio and provide a clearer suggestion of mechanism than the relationship with exogenous carbohydrate oxidation.  相似文献   

20.
This paper examines the validity of the heart rate deflection point (HRDP) obtained with the "updated" Conconi test. Eleven male road cyclists performed 2 progressive incremental cycling tests and a 30-minute prolonged exercise test (PET). From the data obtained, comparisons were made and correlation coefficients were calculated between HRDP, the lactate threshold (LT), and the 3 mmol.L(-1) threshold (AT3). The PET at HRDP demonstrated whether or not a steady state in blood lactate concentration (BLaSS) could be maintained. Significantly lower values for power output (p < 0.01) and heart rate (HR) (p < 0.01) were found at LT compared with HRDP. No differences were found between HRDP and AT3. Only a moderate correlation for power output between HRDP and AT3 (rs = 0.69; p < 0.05) could be observed. During the PET, only 6 out of 11 cyclists reached the target time of 30 minutes, and only 4 cyclists maintained a BLaSS. We conclude that the updated Conconi test is not a valid method for assessing LT or AT3. Therefore, this method seems not suitable to evaluate endurance performance and prescribe exercise intensities in road cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号