首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Mutation of K-Ras is a frequent oncogenic event in human cancers, particularly cancers of lungs, pancreas, and colon. It remains unclear why some tissues are more susceptible to Ras-induced transformation than others. Here, we globally activated a mutant oncogenic K-Ras allele (K-Ras(G12D)) in mice and examined the tissue-specific effects of this activation on cancer pathobiology, Ras signaling, tumor suppressor, DNA damage, and inflammatory responses. Within 5 to 6 weeks of oncogenic Ras activation, mice develop oral and gastric papillomas, lung adenomas, and hematopoietic hyperproliferation and turn moribund. The oral, gastric, and lung premalignant lesions display activated extracellular signal-regulated kinases (Erk)1/2 and NF-κB signaling as well as activated tumor suppressor and DNA damage responses. Other organs such as pancreas, liver, and small intestine do not exhibit neoplastic progression within 6 weeks following K-Ras(G12D) activation and do not show a potent tumor suppressor response. Even though robust Erk1/2 signaling is activated in all the tissues examined, the pErk1/2 distribution remains largely cytoplasmic in K-Ras(G12D)-refractory tissues (pancreas, liver, and intestines) as opposed to a predominantly nuclear localization in K-Ras(G12D)-induced neoplasms of lung, oral, and gastric mucosa. The downstream targets of Ras signaling, pElk-1 and c-Myc, are elevated in K-Ras(G12D)-induced neoplastic lesions but not in K-Ras(G12D)-refractory tissues. We propose that oncogenic K-Ras-refractory tissues delay oncogenic progression by spatially limiting the efficacy of Ras/Raf/Erk1/2 signaling, whereas K-Ras-responsive tissues exhibit activated Ras/Raf/Erk1/2 signaling, rapidly form premalignant tumors, and activate potent antitumor responses that effectively prevent further malignant progression.  相似文献   

2.
Although substantial evidence supports a critical role for the activation of Raf-1 and mitogen-activated protein kinases (MAPKs) in oncogenic Ras-mediated transformation, recent evidence suggests that Ras may activate a second signaling pathway which involves the Ras-related proteins Rac1 and RhoA. Consequently, we used three complementary approaches to determine the contribution of Rac1 and RhoA function to oncogenic Ras-mediated transformation. First, whereas constitutively activated mutants of Rac1 and RhoA showed very weak transforming activity when transfected alone, their coexpression with a weakly transforming Raf-1 mutant caused a greater than 35-fold enhancement of transforming activity. Second, we observed that coexpression of dominant negative mutants of Rac1 and RhoA reduced oncogenic Ras transforming activity. Third, activated Rac1 and RhoA further enhanced oncogenic Ras-triggered morphologic transformation, as well as growth in soft agar and cell motility. Finally, we also observed that kinase-deficient MAPKs inhibited Ras transformation. Taken together, these data support the possibility that oncogenic Ras activation of Rac1 and RhoA, coupled with activation of the Raf/MAPK pathway, is required to trigger the full morphogenic and mitogenic consequences of oncogenic Ras transformation.  相似文献   

3.
Membrane anchorage of Ras proteins is important for their signaling and oncogenic potential. K-Ras4B (K-Ras), the Ras isoform most often mutated in human cancers, is the only Ras isoform where a polybasic motif contributes essential electrostatic interactions with the negatively charged cytoplasmic leaflet. Here we studied the effects of the cationic amphiphilic drug chlorpromazine (CPZ) on the membrane association of oncogenic K-Ras(G12V), cell proliferation, and apoptosis. Combining live cell microscopy, FRAP beam size analysis, and cell fractionation studies, we show that CPZ reduces the association of GFP-K-Ras(G12V) with the plasma membrane and increases its exchange between plasma membrane and cytoplasmic pools. These effects appear to depend on electrostatic interactions because the membrane association of another related protein that has a membrane-interacting polybasic cluster (Rac1(G12V)) was also affected, whereas that of H-Ras was not. The weakened association with the plasma membrane led to a higher fraction of GFP-K-Ras(G12V) in the cytoplasm and in internal membranes, accompanied by either cell cycle arrest (PANC-1 cells) or apoptosis (Rat-1 fibroblasts), the latter being in correlation with the targeting of K-Ras(G12V) to mitochondria. In accord with these results, CPZ compromised the transformed phenotype of PANC-1 cells, as indicated by inhibition of cell migration and growth in soft agar.  相似文献   

4.
5.
The c-Raf-1 protein kinase plays a critical role in intracellular signaling downstream from many tyrosine kinase and G-protein-linked receptors. c-Raf-1 binds to the proto-oncogene Ras in a GTP-dependent manner, but the exact mechanism of activation of c-Raf-1 by Ras is still unclear. We have established a system to study the activation of c-Raf-1 in vitro. This involves mixing membranes from cells expressing oncogenic H-RasG12V, with cytosol from cells expressing epitope-tagged full-length wild-type c-Raf-1. This results in a fraction of the c-Raf-1 binding to the membranes and a concomitant 10- to 20-fold increase in specific activity. Ras was the only component in these membranes required for activation, as purified recombinant farnesylated K-Ras.GTP, but not non-farnesylated K-Ras.GTP or farnesylated K-Ras.GDP, was able to activate c-Raf-1 to the same degree as intact H-RasG12V membranes. The most potent activation occurred under conditions in which phosphorylation was prohibited. Under phosphorylation-permissive conditions, activation of c-Raf-1 by Ras was substantially inhibited. Consistent with the results from other groups, we find that the activation of c-Raf-1 by Src in vivo occurs concomitant with tyrosine phosphorylation on c-Raf-1, and in vitro, activation of c-Raf-1 by Src requires the presence of ATP. Therefore we propose that activation of c-Raf-1 by Ras or by Src occurs through different mechanisms.  相似文献   

6.
Aldosterone induces expression and activation of the GTP-dependent signaling switch K-Ras. This small monomeric G protein is both necessary and sufficient for activation of the epithelial Na(+) channel (ENaC). The mechanism by which K-Ras enhances ENaC activity, however, is uncertain. We demonstrate here that K-Ras activates human ENaC reconstituted in Chinese hamster ovary cells in a GTP-dependent manner. K-Ras influences ENaC activity most likely by affecting open probability. Inhibition of phosphoinositide 3-OH kinase (PI3K) abolished K-Ras actions on ENaC. In contrast, inhibition of other K-Ras effector cascades, including the MAPK and Ral/Rac/Rho cascades, did not affect K-Ras actions on ENaC. Activation of ENaC by K-Ras, moreover, was sensitive to co-expression of dominant negative p85(PI3K). The G12:C40 effector-specific double mutant of Ras, which preferentially activates PI3K, enhanced ENaC activity in a manner sensitive to inhibition of PI3K. Other effector-specific mutants preferentially activating MAPK and RalGDS signaling had no effect. Constitutively active PI3K activated ENaC independent of K-Ras with the effects of PI3K and K-Ras on ENaC not being additive. We conclude that K-Ras activates ENaC via the PI3K cascade.  相似文献   

7.
Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling   总被引:5,自引:0,他引:5  
Gelsolin is a widely distributed actin binding protein involved in controlling cell morphology, motility, signaling and apoptosis. The role of gelsolin in tumor progression, however, remains poorly understood. Here we show that expression of green fluorescent protein (GFP)-tagged gelsolin in MDCK-AZ, MDCKtsSrc or HEK293T cells promotes invasion into collagen type I. In organ culture assays, MDCK cells expressing gelsolin-GFP invaded pre-cultured chick heart fragments. Gelsolin expression inhibited E-cadherin-mediated cell aggregation but did not disrupt the E-cadherin-catenin complex. Co-expression of dominant-negative Rac1N17, but not RhoAN19 or Cdc42N17, counteracted gelsolin-induced invasion, suggesting a requirement for Rac1 activity. Increased ARF6, PLD or PIP5K 1alpha activity canceled out gelsolin-induced invasion. Furthermore, we found that invasion induced by gelsolin is dependent on Ras activity, acting through the PI3K-Rac pathway via the Ras guanine nucleotide exchange factor Sos-1. These findings establish a connection between gelsolin and the Ras oncogenic signaling pathway.  相似文献   

8.
Here we describe a new signaling cross-talk between the Vav/Rac1 and Ras pathways that is established through the stimulation of RasGRP1, an exchange factor for Ras subfamily GTPases. This interaction is crucial for Ras activation in lymphoid cells, since this GTPase cannot become activated in the absence of Vav proteins. The activation of RasGRP1 requires both the generation of diacylglycerol via phospho lipase C-gamma and the induction of actin polymerization, two responses induced by Vav and Rac1 that facilitate the translocation of RasGRP1 to juxtamembrane areas of the cell. Consistent with this, the cross-talk can be activated by tyrosine-phosphorylated wild-type Vav, oncogenic Vav and constitutively active Rac1. Conversely, Ras activation can be blocked in lymphocytes and ectopic systems using inhibitors affecting either phospholipase C-gamma or F-actin polymerization. These results indicate that a relay mechanism exists in lymphoid and other cells helping in the generation of robust signaling responses by the Rac/Rho and Ras pathways upon receptor engagement.  相似文献   

9.
Ras proteins regulate signaling pathways important for cell growth, differentiation, and survival. Oncogenic mutant Ras proteins are commonly expressed in human tumors, with mutations of the K-Ras isoform being most prevalent. To be active, K-Ras must undergo posttranslational processing and associate with the plasma membrane. We therefore devised a high-content screening assay to search for inhibitors of K-Ras plasma membrane association. Using this assay, we identified fendiline, an L-type calcium channel blocker, as a specific inhibitor of K-Ras plasma membrane targeting with no detectable effect on the localization of H- and N-Ras. Other classes of L-type calcium channel blockers did not mislocalize K-Ras, suggesting a mechanism that is unrelated to calcium channel blockade. Fendiline did not inhibit K-Ras posttranslational processing but significantly reduced nanoclustering of K-Ras and redistributed K-Ras from the plasma membrane to the endoplasmic reticulum (ER), Golgi apparatus, endosomes, and cytosol. Fendiline significantly inhibited signaling downstream of constitutively active K-Ras and endogenous K-Ras signaling in cells transformed by oncogenic H-Ras. Consistent with these effects, fendiline blocked the proliferation of pancreatic, colon, lung, and endometrial cancer cell lines expressing oncogenic mutant K-Ras. Taken together, these results suggest that inhibitors of K-Ras plasma membrane localization may have utility as novel K-Ras-specific anticancer therapeutics.  相似文献   

10.
Pancreatic cancer (PDAC) is a lethal disease with a five-year survival of 3-5%. Mutations in K-Ras are found in nearly all cases, but K-Ras mutations alone are not sufficient for the development of PDAC. Additional factors contribute to activation of Ras signaling and lead to tumor formation. Galectin-3 (Gal-3), a multifunctional β-galactoside-binding protein, is highly expressed in PDAC. We therefore investigated the functional role of Gal-3 in pancreatic cancer progression and its relationship to Ras signaling. Expression of Gal-3 was determined by immunohistochemistry, Q-PCR and immunoblot. Functional studies were performed using pancreatic cell lines genetically engineered to express high or low levels of Gal-3. Ras activity was examined by Raf pull-down assays. Co-immunoprecipitation and immunofluorescence were used to assess protein-protein interactions. In this study, we demonstrate that Gal-3 was highly up-regulated in human tumors and in a mutant K-Ras mouse model of PDAC. Down-regulation of Gal-3 by lentivirus shRNA decreased PDAC cell proliferation and invasion in vitro and reduced tumor volume and size in an orthotopic mouse model. Gal-3 bound Ras and maintained Ras activity; down-regulation of Gal-3 decreased Ras activity as well as Ras down-stream signaling including phosphorylation of ERK and AKT and Ral A activity. Transfection of Gal-3 cDNA into PDAC cells with low-level Gal-3 augmented Ras activity and its down-stream signaling. These results suggest that Gal-3 contributes to pancreatic cancer progression, in part, by binding Ras and activating Ras signaling. Gal-3 may therefore be a potential novel target for this deadly disease.  相似文献   

11.
Protein kinase C iota (PKCiota) has been implicated in Ras signaling, however, a role for PKCiota in oncogenic Ras-mediated transformation has not been established. Here, we show that PKCiota is a critical downstream effector of oncogenic Ras in the colonic epithelium. Transgenic mice expressing constitutively active PKCiota in the colon are highly susceptible to carcinogen-induced colon carcinogenesis, whereas mice expressing kinase-deficient PKCiota (kdPKCiota) are resistant to both carcinogen- and oncogenic Ras-mediated carcinogenesis. Expression of kdPKCiota in Ras-transformed rat intestinal epithelial cells blocks oncogenic Ras-mediated activation of Rac1, cellular invasion, and anchorage-independent growth. Constitutively active Rac1 (RacV12) restores invasiveness and anchorage-independent growth in Ras-transformed rat intestinal epithelial cells expressing kdPKCiota. Our data demonstrate that PKCiota is required for oncogenic Ras- and carcinogen-mediated colon carcinogenesis in vivo and define a procarcinogenic signaling axis consisting of Ras, PKCiota, and Rac1.  相似文献   

12.
Protein kinase C betaII (PKCbetaII) promotes colon carcinogenesis. Expression of PKCbetaII in the colon of transgenic mice induces hyperproliferation and increased susceptibility to colon cancer. To determine molecular mechanisms by which PKCbetaII promotes colon cancer, we established rat intestinal epithelial (RIE) cells stably expressing PKCbetaII. Here we show that RIE/PKCbetaII cells acquire an invasive phenotype that is blocked by the PKCbeta inhibitor LY379196. Invasion is not observed in RIE cells expressing a kinase-deficient PKCbetaII, indicating that PKCbetaII activity is required for the invasive phenotype. PKCbetaII induces activation of K-Ras and the Ras effector, Rac1, in RIE/PKCbetaII cells. PKCbetaII-mediated invasion is blocked by the Mek inhibitor, U0126, and by expression of either dominant negative Rac1 or kinase-deficient atypical PKCiota. Expression of constitutively active Rac1 induces Mek activation and invasion in RIE cells, indicating that Rac1 is the critical downstream effector of PKCbetaII-mediated invasion. Taken together, our results define a novel PKCbetaII --> Ras --> PKCiota /Rac1 --> Mek signaling pathway that induces invasion in intestinal epithelial cells. This pathway provides a plausible mechanism by which PKCbetaII promotes colon carcinogenesis.  相似文献   

13.
By an expression cloning method using Fas-transgenic Balb3T3 cells, we tried to obtain inhibitory genes against Fas-mediated apoptosis and identified proto-oncogene c-K-ras. Transient expression of K-Ras mutants revealed that oncogenic mutant K-Ras (RasV12) strongly inhibited, whereas dominant-inhibitory mutant K-Ras (RasN17) enhanced, Fas-mediated apoptosis by inhibiting Fas-triggered activation of caspases without affecting an expression level of Fas. Among the target molecules of Ras, including Raf (mitogen-activated protein kinase kinase kinase [MAPKKK]), phosphatidylinositol 3 (PI-3) kinase, and Ral guanine nucleotide exchange factor (RalGDS), only the constitutively active form of Raf (Raf-CAAX) could inhibit Fas-mediated apoptosis. In addition, the constitutively active form of MAPKK (SDSE-MAPKK) suppressed Fas-mediated apoptosis, and MKP-1, a phosphatase specific for classical MAPK, canceled the protective activity of oncogenic K-Ras (K-RasV12), Raf-CAAX, and SDSE-MAPKK. Furthermore, physiological activation of Ras by basic fibroblast growth factor (bFGF) protected Fas-transgenic Balb3T3 cells from Fas-mediated apoptosis. bFGF protection was also dependent on the activation of the MAPK pathway through Ras. All the results indicate that the activation of MAPK through Ras inhibits Fas-mediated apoptosis in Balb3T3 cells, which may play a role in oncogenesis.  相似文献   

14.
Oncogenic mutant Ras is frequently expressed in human cancers, but no anti-Ras drugs have been developed. Since membrane association is essential for Ras biological activity, we developed a high content assay for inhibitors of Ras plasma membrane localization. We discovered that staurosporine and analogs potently inhibit Ras plasma membrane binding by blocking endosomal recycling of phosphatidylserine, resulting in redistribution of phosphatidylserine from plasma membrane to endomembrane. Staurosporines are more active against K-Ras than H-Ras. K-Ras is displaced to endosomes and undergoes proteasomal-independent degradation, whereas H-Ras redistributes to the Golgi and is not degraded. K-Ras nanoclustering on the plasma membrane is also inhibited. Ras mislocalization does not correlate with protein kinase C inhibition or induction of apoptosis. Staurosporines selectively abrogate K-Ras signaling and proliferation of K-Ras-transformed cells. These results identify staurosporines as novel inhibitors of phosphatidylserine trafficking, yield new insights into the role of phosphatidylserine and electrostatics in Ras plasma membrane targeting, and validate a new target for anti-Ras therapeutics.  相似文献   

15.
Ras GTPases are signaling switches that control critical cellular processes including gene expression, differentiation, and apoptosis. The major Ras isoforms (K, H, and N) contain a conserved core GTPase domain, but have distinct biological functions. Among the three Ras isoforms there are clear differences in post-translational regulation, which contribute to differences in localization and signaling output. Modification by ubiquitination was recently reported to activate Ras signaling in cells, but the mechanisms of activation are not well understood. Here, we show that H-Ras is activated by monoubiquitination and that ubiquitination at Lys-117 accelerates intrinsic nucleotide exchange, thereby promoting GTP loading. This mechanism of Ras activation is distinct from K-Ras monoubiquitination at Lys-147, which leads to impaired regulator-mediated GTP hydrolysis. These findings reveal that different Ras isoforms are monoubiquitinated at distinct sites, with distinct mechanisms of action, but with a common ability to chronically activate the protein in the absence of a receptor signal or oncogenic mutation.  相似文献   

16.
Ras proteins (H-, N-, and K-Ras) operate as molecular switches in signal transduction cascades controlling cell proliferation, differentiation, or apoptosis. The interaction of Ras with its effectors is mediated by the effector-binding loop, but different data about Ras location to plasma membrane subdomains and new roles for some docking/scaffold proteins point to signaling specificities of the different Ras proteins. To investigate the molecular mechanisms for these specificities, we compared an effector loop mutation (P34G) of three Ras isoforms (H-, N-, and K-Ras4B) for their biological and biochemical properties. Although this mutation diminished the capacity of Ras proteins to activate the Raf/ERK and the phosphatidylinositol 3-kinase/AKT pathways, the H-Ras V12G34 mutant retained the ability to cause morphological transformation of NIH 3T3 fibroblasts, whereas both the N-Ras V12G34 and the K-Ras4B V12G34 mutants were defective in this biological activity. On the other hand, although both the N-Ras V12G34 and the K-Ras4B V12G34 mutants failed to promote activation of the Ral-GDS/Ral A/PLD and the Ras/Rac pathways, the H-Ras V12G34 mutant retained the ability to activate these signaling pathways. Interestingly, the P34G mutation reduced specifically the N-Ras and K-Ras4B in vitro binding affinity to Ral-GDS, but not in the case of H-Ras. Thus, independently of Ras location to membrane subdomains, there are marked differences among Ras proteins in the sensitivity to an identical mutation (P34G) affecting the highly conserved effector-binding loop.  相似文献   

17.
Farnesyltransferase inhibitors (FTIs) block Ras farnesylation, subcellular localization and activity, and inhibit the growth of Ras-transformed cells. Although FTIs are ineffective against K-Ras4B, the Ras isoform most commonly mutated in human cancers, they can inhibit the growth of tumors containing oncogenic K-Ras4B, implicating other farnesylated proteins or suggesting distinct functions for farnesylated and for geranylgeranylated K-Ras, which is generated when farnesyltransferase is inhibited. In addition to bypassing FTI blockade through geranylgeranylation, K-Ras4B resistance to FTIs may also result from its higher affinity for farnesyltransferase. Using chimeric Ras proteins containing all combinations of Ras background, CAAX motif, and K-Ras polybasic domain, we show that either a polybasic domain or an alternatively prenylated CAAX renders Ras prenylation, Ras-induced Elk-1 activation, and anchorage-independent cell growth FTI-resistant. The polybasic domain alone increases the affinity of Ras for farnesyltransferase, implying independent roles for each K-Ras4B sequence element in FTI resistance. Using microarray analysis and colony formation assays, we confirm that K-Ras function is independent of the identity of the prenyl group and, therefore, that FTI inhibition of K-Ras transformed cells is likely to be independent of K-Ras inhibition. Our results imply that relevant FTI targets will lack both polybasic and potentially geranylgeranylated methionine-CAAX motifs.  相似文献   

18.
Ras is an essential component of signal transduction pathways that control cell proliferation, differentiation, and survival. In this study we have examined the cellular responses to high-intensity Ras signaling. Expression of increasing amounts of the oncogenic form of human HRas, HRasV12, results in a dose-dependent induction of apoptosis in both primary and immortalized cells. The induction of apoptosis by HRasV12 is blocked by activated Rac and potentiated by dominant interfering Rac. The ability of Rac to suppress Ras-induced apoptosis is dependent on effector pathway(s) controlled by the insert region and is linked to the activation of NF-kappaB. The apoptotic effect of HRasV12 requires the activation of both the ERK and JNK mitogen-activated protein kinase cascade and is independent of p53. These results demonstrate a role for Rac in controlling signals that are necessary for cell survival, and suggest a mechanism by which Rac activity can confer growth advantage to cells transformed by the ras oncogene.  相似文献   

19.
Extracellular signal-Regulated Kinase (ERK) controls a variety of cellular processes, including cell proliferation and cell motility. While oncogenic mutations in Ras and B-Raf result in deregulated ERK activity and proliferation and migration in some tumor cells, other tumors exhibit elevated ERK signaling in the absence of these mutations. Here we provide evidence that PAK can directly activate MEK1 by a mechanism distinct from conventional Ras/Raf mediated activation. We find that PAK phosphorylation of MEK1 serine 298 stimulates MEK1 autophosphorylation on the activation loop, and activation of MEK1 activity towards ERK in in vitro reconstitution experiments. Serines 218 and/or 222 in the MEK1 activation loop are required for PAK-stimulated MEK1 activity towards ERK. MEK2, which is a poor target for PAK phosphorylation in cells, is not activated in this manner. Tissue culture experiments verify that this mechanism is used in suspended fibroblasts expressing mutationally activated PAK1. We speculate that aberrant signaling through PAK may directly induce anchorage-independent MEK1 activation in tumor cells lacking oncogenic Ras or Raf mutations, and that this mechanism may contribute to localized MEK signaling in focal contacts and adhesions during cell adhesion or migration.  相似文献   

20.
Ras proteins are key regulators of cell growth and differentiation. Mammalian cells express three closely related Ras proteins: Ha-Ras, K-Ras, and N-Ras. We have compared the abilities of the Ha-Ras and K-Ras isoforms to activate the Rac effector pathway, using three Rac-dependent readouts: induction of membrane ruffling and pinocytosis, stimulation of cell motility, and Pak binding. The total surface area of membrane ruffles induced by K-RasV12 was 2-fold greater than that induced by Ha-RasV12. Likewise, the number of K-RasV12-induced pinocytic vesicles per cell was approximately 2-fold greater than that induced by Ha-RasV12. In a wound healing assay, K-RasV12-injected cells migrated twice as fast as Ha-RasV12-injected cells. Moreover, the Pak binding activity of Rac, which is indicative of the amount of GTP-bound Rac, was higher in K-RasV12-expressing cells than Ha-RasV12-expressing cells. These results suggest that K-Ras activates Rac more efficiently than Ha-Ras. The preferential activation of Rac by K-Ras is dependent on the mode of membrane anchoring and impacts on the ability of K-Ras to regulate cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号