首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimized design and assessment of whole genome tiling arrays   总被引:1,自引:0,他引:1  
MOTIVATION: Recent advances in microarray technologies have made it feasible to interrogate whole genomes with tiling arrays and this technique is rapidly becoming one of the most important high-throughput functional genomics assays. For large mammalian genomes, analyzing oligonucleotide tiling array data is complicated by the presence of non-unique sequences on the array, which increases the overall noise in the data and may lead to false positive results due to cross-hybridization. The ability to create custom microarrays using maskless array synthesis has led us to consider ways to optimize array design characteristics for improving data quality and analysis. We have identified a number of design parameters to be optimized including uniqueness of the probe sequences within the whole genome, melting temperature and self-hybridization potential. RESULTS: We introduce the uniqueness score, U, a novel quality measure for oligonucleotide probes and present a method to quickly compute it. We show that U is equivalent to the number of shortest unique substrings in the probe and describe an efficient greedy algorithm to design mammalian whole genome tiling arrays using probes that maximize U. Using the mouse genome, we demonstrate how several optimizations influence the tiling array design characteristics. With a sensible set of parameters, our designs cover 78% of the mouse genome including many regions previously considered 'untilable' due to the presence of repetitive sequence. Finally, we compare our whole genome tiling array designs with commercially available designs. AVAILABILITY: Source code is available under an open source license from http://www.ebi.ac.uk/~graef/arraydesign/.  相似文献   

2.
3.
An assessment of the hybridization characteristics of oligonucleotide tiling arrays was carried out using 162 full-length sequenced cDNA clones in spike-in experiments. The properties of array probes that influence signal intensity were investigated, and their capability in the detection of the cDNA exons was evaluated. The signal intensities detected in exonic and nonexonic genomic regions were examined by focusing on the features of probe sequences that raise or lower the level of intensity and on the causes of false positive signals found in nonexonic regions. The effectiveness of measures used in published protocols to improve the separation between signal and background intensity distributions, including the use of replicates and threshold parameterization of signal intensity, was assessed. Sensitivity and specificity in the detection of exons were measured using various sets of threshold parameters, and the effects of each parameter on the detection efficiency and the rate of false positives were evaluated. It was also demonstrated that hybridization of full-length cDNA clones is an excellent method to investigate the characteristics of oligonucleotide tiling arrays.  相似文献   

4.
5.
We present a framework for detecting probes in oligonucleotide microarrays that may add significant error to measurements in hybridization experiments. Four types of so-called degenerate probe behavior are considered: secondary structure formation, self-dimerization, cross-hybridization, and dimerization. The framework uses a well-established model for computing the free energy of nucleic acid sequence hybridization and a novel method for the detection of patterns in hybridization experiment data. Our primary result is the identification of unique patterns in hybridization experiment data that are shown to correlate with each type of degenerate probe behavior. A support function for identifying degenerate probes from a large set of hybridization experiments is given and some preliminary experimental results are given for the Affymetrix HuGeneFL GeneChip. Finally, we show a strong relationship between the Affymetrix discrimination measure for a probe and the free-energy estimate from theoretical models of hybridization. In particular, probes on the HuGeneFL GeneChip with high free-energy estimates (weak hybridization) have almost always approximately zero discrimination. The framework can be applied to any Affymetrix oligonucleotide array, and the software is made freely available to the community.  相似文献   

6.
Most current microarray oligonucleotide probe design strategies are based on probe design factors (PDFs), which include probe hybridization free energy (PHFE), probe minimum folding energy (PMFE), dimer score, hairpin score, homology score and complexity score. The impact of these PDFs on probe performance was evaluated using four sets of microarray comparative genome hybridization (aCGH) data, which included two array manufacturing methods and the genomes of two species. Since most of the hybridizing DNA is equimolar in CGH data, such data are ideal for testing the general hybridization properties of almost all candidate oligonucleotides. In all our data sets, PDFs related to probe secondary structure (PMFE, hairpin score and dimer score) are the most significant factors linearly correlated with probe hybridization intensities. PHFE, homology and complexity score are correlating significantly with probe specificities, but in a non-linear fashion. We developed a new PDF, pseudo probe binding energy (PPBE), by iteratively fitting dinucleotide positional weights and dinucleotide stacking energies until the average residue sum of squares for the model was minimized. PPBE showed a better correlation with probe sensitivity and a better specificity than all other PDFs, although training data are required to construct a PPBE model prior to designing new oligonucleotide probes. The physical properties that are measured by PPBE are as yet unknown but include a platform-dependent component. A practical way to use these PDFs for probe design is to set cutoff thresholds to filter out bad quality probes. Programs and correlation parameters from this study are freely available to facilitate the design of DNA microarray oligonucleotide probes.  相似文献   

7.
Sequence dependence of cross-hybridization on short oligo microarrays   总被引:9,自引:3,他引:6  
One of the critical problems in the short oligo microarray technology is how to deal with cross-hybridization that produces spurious data. Little is known about the details of cross-hybridization effect at molecular level. Here, we report a free energy analysis of cross-hybridization on short oligo microarrays using data from a spike-in study. Our analysis revealed that cross-hybridization on the arrays is mostly caused by oligo fragments with a run of 10–16 nt complementary to the probes. Mismatches were estimated to be energetically much more costly in cross-hybridization than that in gene-specific hybridization, implying that the sources of cross-hybridization must be very different between a PM–MM probe pair. Consequently, it is unreliable to use MM probe signal to track cross-hybridizing signal on a corresponding PM probe. Our results also showed that the oligo fragments tend to bind to the 5′ ends of the probes, and are rarely seen at the 3′ ends. These results are useful for microarray design and data analysis.  相似文献   

8.
ROSO: optimizing oligonucleotide probes for microarrays   总被引:1,自引:0,他引:1  
ROSO is software to design optimal oligonucleotide probe sets for microarrays. Selected probes show no significant cross-hybridization, no stable secondary structures and their Tm are chosen to minimize the Tm variability of the probe set. AVAILABILITY: The program is available on the internet. Sources are freely available, for non-profit use, on request to the authors. Supplementary information: http://pbil.univ-lyon1.fr/roso  相似文献   

9.
10.
11.
12.
Fabrication of DNA microarrays using unmodified oligonucleotide probes   总被引:14,自引:0,他引:14  
Call DR  Chandler DP  Brockman F 《BioTechniques》2001,30(2):368-72, 374, 376 passim
Microarrays printed on glass slides are often constructed by covalently linking oligonucleotide probes to a derivatized surface. These procedures typically require relatively expensive amine- or thiol-modified oligonucleotide probes that add considerable expense to larger arrays. We describe a system by which unmodified oligonucleotide probes are bound to either nonderivatized or epoxy-silane-derivatized glass slides. Biotinylated PCR products are heat denatured, hybridized to the arrays, and detected using an enzymatic amplification system. Unmodified probes appear to detach from the slide surface at high pH (> 10.0), suggesting that hydrogen bonding plays a significant role in probe attachment. Regardless of surface preparation, high temperature (up to 65 degrees C) and low ionic strength (deionized water) do not disturb probe attachment; hence, the fabrication method described here is suitable for a wide range of hybridization stringencies and conditions. We illustrate kinetics of room temperature hybridizations for probes attached to nonderivatized slides, and we demonstrate that unmodified probes produce hybridization signals equal to amine-modified, covalently bound probes. Our method provides a cost-effective alternative to conventional attachment strategies that is particularly suitable for genotyping PCR products with nucleic acid microarrays.  相似文献   

13.
14.
A major challenge in microarray design is the selection of highly specific oligonucleotide probes for all targeted genes of interest, while maintaining thermodynamic uniformity at the hybridization temperature. We introduce a novel microarray design framework (Thermodynamic Model-based Oligo Design Optimizer, TherMODO) that for the first time incorporates a number of advanced modelling features: (i) A model of position-dependent labelling effects that is quantitatively derived from experiment. (ii) Multi-state thermodynamic hybridization models of probe binding behaviour, including potential cross-hybridization reactions. (iii) A fast calibrated sequence-similarity-based heuristic for cross-hybridization prediction supporting large-scale designs. (iv) A novel compound score formulation for the integrated assessment of multiple probe design objectives. In contrast to a greedy search for probes meeting parameter thresholds, this approach permits an optimization at the probe set level and facilitates the selection of highly specific probe candidates while maintaining probe set uniformity. (v) Lastly, a flexible target grouping structure allows easy adaptation of the pipeline to a variety of microarray application scenarios. The algorithm and features are discussed and demonstrated on actual design runs. Source code is available on request.  相似文献   

15.
Empirical establishment of oligonucleotide probe design criteria   总被引:6,自引:0,他引:6  
Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of < or =85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (< or =15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than -30 kcal/mol for 50-mer probes or -40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.  相似文献   

16.
Empirical Establishment of Oligonucleotide Probe Design Criteria   总被引:11,自引:0,他引:11  
Criteria for the design of gene-specific and group-specific oligonucleotide probes were established experimentally via an oligonucleotide array that contained perfect match (PM) and mismatch probes (50-mers and 70-mers) based upon four genes. The effects of probe-target identity, continuous stretch, mismatch position, and hybridization free energy on specificity were tested. Little hybridization was observed at a probe-target identity of ≤85% for both 50-mer and 70-mer probes. PM signal intensities (33 to 48%) were detected at a probe-target identity of 94% for 50-mer oligonucleotides and 43 to 55% for 70-mer probes at a probe-target identity of 96%. When the effects of sequence identity and continuous stretch were considered independently, a stretch probe (>15 bases) contributed an additional 9% of the PM signal intensity compared to a nonstretch probe (≤15 bases) at the same identity level. Cross-hybridization increased as the length of continuous stretch increased. A 35-base stretch for 50-mer probes or a 50-base stretch for 70-mer probes had approximately 55% of the PM signal. Little cross-hybridization was observed for probes with a minimal binding free energy greater than −30 kcal/mol for 50-mer probes or −40 kcal/mol for 70-mer probes. Based on the experimental results, a set of criteria are suggested for the design of gene-specific and group-specific oligonucleotide probes, and the experimentally established criteria should provide valuable information for new software and algorithms for microarray-based studies.  相似文献   

17.
Microarray blob-defect removal improves array analysis   总被引:1,自引:0,他引:1  
MOTIVATION: New generation Affymetrix oligonucleotide microarrays often have blob-like image defects that will require investigators to either repeat their hybridization assays or analyze their data with the defects left in place. We investigated the effect of analyzing a spike-in experiment on Affymetrix ENCODE tiling arrays in the presence of simulated blobs covering between 1 and 9% of the array area. Using two different ChIP-chip tiling array analysis programs (Affymetrix tiling array software, TAS, and model-based analysis of tiling arrays, MAT), we found that even the smallest blob defects significantly decreased the sensitivity and increased the false discovery rate (FDR) of the spike-in target prediction. RESULTS: We introduced a new software tool, the microarray blob remover (MBR), which allows rapid visualization, detection and removal of various blob defects from the .CEL files of different types of Affymetrix microarrays. It is shown that using MBR significantly improves the sensitivity and FDR of a tiling array analysis compared to leaving the affected probes in the analysis. AVAILABILITY: The MBR software and the sample array .CEL files used in this article are available at: http://liulab.dfci.harvard.edu/Software/MBR/MBR.htm  相似文献   

18.
19.
20.
Li X  He Z  Zhou J 《Nucleic acids research》2005,33(19):6114-6123
The oligonucleotide specificity for microarray hybridization can be predicted by its sequence identity to non-targets, continuous stretch to non-targets, and/or binding free energy to non-targets. Most currently available programs only use one or two of these criteria, which may choose ‘false’ specific oligonucleotides or miss ‘true’ optimal probes in a considerable proportion. We have developed a software tool, called CommOligo using new algorithms and all three criteria for selection of optimal oligonucleotide probes. A series of filters, including sequence identity, free energy, continuous stretch, GC content, self-annealing, distance to the 3′-untranslated region (3′-UTR) and melting temperature (Tm), are used to check each possible oligonucleotide. A sequence identity is calculated based on gapped global alignments. A traversal algorithm is used to generate alignments for free energy calculation. The optimal Tm interval is determined based on probe candidates that have passed all other filters. Final probes are picked using a combination of user-configurable piece-wise linear functions and an iterative process. The thresholds for identity, stretch and free energy filters are automatically determined from experimental data by an accessory software tool, CommOligo_PE (CommOligo Parameter Estimator). The program was used to design probes for both whole-genome and highly homologous sequence data. CommOligo and CommOligo_PE are freely available to academic users upon request.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号