首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In morphological analysis of the femur, the hip joint centre (HJC) is generally determined using a 3D model of the femoral head based on medical images. However, the portion of the image selected to represent the femoral head may influence the HJC. We determined if this influence invalidates the results of three HJC calculation methods, one of which we introduce here.

To isolate femoral heads in cadaver CT images, thresholds were applied to the distance between femur and acetabulum models. The sensitivity of the HJC to these thresholds and the differences between methods were quantified.

For thresholds between 6 and 9 mm and healthy hips, differences between methods were below 1 mm and all methods were insensitive to threshold changes. For higher thresholds, the fovea capitis femoris disturbed the HJC. In two deformed hips, the new method performed superiorly. We conclude that for normal hips all methods produce valid results.  相似文献   

2.
The human hip joint is normally represented as a spherical hinge and its centre of rotation is used to construct femoral anatomical axes and to calculate hip joint moments. The estimate of the hip joint centre (HJC) position using a functional approach is affected by stereophotogrammetric errors and soft tissue artefacts. The aims of this study were (1) to assess the accuracy with which the HJC position can be located using stereophotogrammetry and (2) to investigate the effects of hip motion amplitude on this accuracy. Experiments were conducted on four adult cadavers. Cortical pins, each equipped with a marker cluster, were implanted in the pelvis and femur, and eight skin markers were attached to the thigh. Recordings were made while an operator rotated the hip joint exploiting the widest possible range of motion. For HJC determination, a proximal and a distal thigh skin marker cluster and two recent analytical methods, the quartic sphere fit (QFS) method and the symmetrical centre of rotation estimation (SCoRE) method, were used. Results showed that, when only stereophotogrammetric errors were taken into account, the analytical methods performed equally well. In presence of soft tissue artefacts, HJC errors highly varied among subjects, methods, and skin marker clusters (between 1.4 and 38.5 mm). As expected, larger errors were found in the subject with larger soft tissue artefacts. The QFS method and the distal cluster performed generally better and showed a mean HJC location accuracy better than 10 mm over all subjects. The analysis on the effect of hip movement amplitude revealed that a reduction of the amplitude does not improve the HJC location accuracy despite a decrease of the artefact amplitude.  相似文献   

3.
The location of the hip joint centre (HJC) is required for calculations of hip moments, the location and orientation of the femur, and muscle lengths and lever arms. In clinical gait analysis, the HJC is normally estimated using regression equations based on normative data obtained from adult populations. There is limited relevant anthropometric data available for children, despite the fact that clinical gait analysis is predominantly used for the assessment of children with cerebral palsy. In this study, pelvic MRI scans were taken of eight adults (ages 23-40), 14 healthy children (ages 5-13) and 10 children with spastic diplegic cerebral palsy (ages 6-13). Relevant anatomical landmarks were located in the scans, and the HJC location in pelvic coordinates was found by fitting a sphere to points identified on the femoral head. The predictions of three common regression equations for HJC location were compared to those found directly from MRI. Maximum absolute errors of 31 mm were found in adults, 26 mm in children, and 31 mm in the cerebral palsy group. Results from regression analysis and leave-one-out cross-validation techniques on the MRI data suggested that the best predictors of HJC location were: pelvic depth for the antero-posterior direction; pelvic width and leg length for the supero-inferior direction; and pelvic depth and pelvic width for the medio-lateral direction. For single-variable regression, the exclusion of leg length and pelvic depth from the latter two regression equations is proposed. Regression equations could be generalised across adults, children and the cerebral palsy group.  相似文献   

4.
The accurate estimation of the hip joint centre (HJC) in gait analysis and in computer assisted orthopaedic procedures is a basic requirement. Functional methods, based on rigid body localisation, assessing the kinematics of the femur during circumduction movements (pivoting) have been used for estimating the HJC. Localising the femoral segment only, as it is usually done in total knee replacement procedure, can give rise to estimation errors, since the pelvis, during the passive pivoting manoeuvre, might undergo spatial displacements. This paper presents the design and test of an unscented Kalman filter that allows the estimation of the HJC by observing the pose of the femur and the 3D coordinates of a single marker attached to the pelvis. This new approach was validated using a hip joint mechanical simulator, mimicking both hard and soft tissues. The algorithm performances were compared with the literature standards and proved to have better performances in case of pelvis translation greater than 8 mm, thus satisfying the clinical requirements of the application.  相似文献   

5.
Numerous supporting structures assist in the retention of the femoral head within the acetabulum of the normal hip joint including the capsule, labrum, and ligament of the femoral head (LHF). During total hip arthroplasty (THA), the LHF is often disrupted or degenerative and is surgically removed. In addition, a portion of the remaining supporting structures is transected or resected to facilitate surgical exposure. The present study analyzes the effects of LHF absence and surgical dissection in THA patients. Twenty subjects (5 normal hip joints, 10 nonconstrained THA, and 5 constrained THA) were evaluated using fluoroscopy while performing active hip abduction. All THA subjects were considered clinically successful. Fluoroscopic videos of the normal hips were analyzed using digitization, while those with THA were assessed using a computerized interactive model-fitting technique. The distance between the femoral head and acetabulum was measured to determine if femoral head separation occurred. Error analysis revealed measurements to be accurate within 0.75mm. No separation was observed in normal hips or those subjects implanted with constrained THA, while all 10 (100%) with unconstrained THA demonstrated femoral head separation, averaging 3.3mm (range 1.9-5.2mm). This study has shown that separation of the prosthetic femoral head from the acetabular component can occur. The normal hip joint has surrounding capsuloligamentous structures and a ligament attaching the femoral head to the acetabulum. We hypothesize that these soft tissue supports create a passive, resistant force at the hip, preventing femoral head separation. The absence of these supporting structures after THA may allow increased hip joint forces, which may play a role in premature polyethylene wear or prosthetic loosening.  相似文献   

6.
We were interested in whether or not the biomechanical status of the hip influences the course of avascular necrosis of the femoral head. To investigate this, we used a computer aided system based on a three dimensional mathematical model for determining the stress distribution in the hip joint from standard anteroposterior rentgenographs (X-ray images) of both hips and pelvis. Based on the results of our study, we suggest that the biomechanical parameters of the hip play an important role in the outcome of treatment of hips affected by avascular necrosis of the femoral head.  相似文献   

7.
The functional method identifies the hip joint centre (HJC) as the centre of rotation of the femur relative to the pelvis during an ad hoc movement normally recorded using stereophotogrammetry. This method may be used for the direct determination of subject-specific HJC coordinates or for creating a database from which regression equations may be derived that allow for the prediction of those coordinates. In order to contribute to the optimization of the functional method, the effects of the following factors were investigated: the algorithm used to estimate the HJC coordinates from marker coordinates, the type and amplitude of the movement of the femur relative to the pelvis, marker cluster location and dimensions, and the number of data samples. This was done using a simulation approach which, in turn, was validated using experiments made on a physical analogue of the pelvis and femur system. The algorithms used in the present context were classified and, in some instances, modified in order to optimize both accuracy and computation time, and submitted to a comparative evaluation. The type of movement that allowed for the most accurate results consisted of several flexion-extension/abduction-adduction movements performed on vertical planes of different orientations, followed by a circumduction movement. The accuracy of the HJC estimate improved, with an increasing rate, as a function of the amplitude of these movements. A sharp improvement was found as the number of the photogrammetric data samples used to describe the movement increased up to 500. For optimal performance with the recommended algorithms, markers were best located as far as possible from each other and with their centroid as close as possible to the HJC. By optimizing the analytical and experimental protocol, HJC location error not caused by soft tissue artefacts may be reduced by a factor of ten with a maximal expected value for such error of approximately 1mm.  相似文献   

8.
An alternative, yet unverified, predictive method that places the hip joint center (HJC) at one-quarter of the distance from the ipsolateral to the contralateral greater trochanter (GT method) is currently widely used in the biomechanics community. Therefore, the objective of this study was to confirm that this method is a viable option for estimating HJC coordinates. To accomplish this, HJC coordinates in the pelvic anatomical coordinate system were estimated via the GT method, a functional method, and the regression equations proposed by Bell et al. (1990). The HJC coordinated estimated by the functional method served as a baseline measurement. The results of this study demonstrate that all three methods evaluated offer repeatable estimates of HJC location. In comparison to the functional method, the GT method yielded a HJC estimate that was 7.6 mm medial, 12.2 mm posterior, and 4.8 mm proximal. On the other hand, the Bell regression equations estimated the HJC to be 2.6 mm medial, 7.2 mm posterior, and 21.7 mm proximal relative to the functional method. Additionally, the total 3D difference between the GT and functional methods was 23.5 mm compared to the 30.8 mm difference between the Bell and functional methods. These results suggest that the GT method is a viable option for estimating HJC coordinates.  相似文献   

9.
Methods to determine the hip joint centre (HJC) location are necessary in gait analysis. It has been demonstrated that the methods proposed in the literature involve large mislocation errors. The choice should be made according to the extent by which HJC location errors distort the estimates of angles and resultant moments at the hip and knee joints. This study aimed at quantifying how mislocation errors propagate to these gait analysis results. Angles and moments at the hip and knee joint were calculated for five able-bodied subjects during level walking. The nominal position of the HJC was determined as the position of the pivot point of a 3D movement of the thigh relative to the pelvis. Angles and moments were then re-calculated after having added to HJC co-ordinates errors in the range of +/-30 mm. Angles and moments at both hip and knee joints were affected by HJC mislocation. The hip moments showed the largest propagation error: a 30 mm HJC anterior mislocation resulted in a propagated error into flexion/extension component of about -22%. The hip abduction/adduction moment was found the second largest affected quantity: a 30 mm lateral HJC mislocation produced a propagated error of about -15%. Finally, a 30 mm posterior HJC mislocation produced a delay of the flexion-to-extension timing in the order of 25% of the stride duration. HJC estimation methods with minimum antero-posterior error should therefore be preferred.  相似文献   

10.
Increasing use of patient-specific surgical procedures in orthopaedics means that patient-specific anatomical coordinate systems (ACSs) need to be determined. For knee bones, automatic algorithms constructing ACSs exist and are assumed to be more reliable than manual methods, although both approaches are based on non-unique numerical reconstructions of true bone geometries. Furthermore, determining the best algorithms is difficult, as algorithms are evaluated on different datasets. Thus, in this study, we developed 3 algorithms, each with 3 variants, and compared them with 5 from the literature on a dataset comprising 24 lower-limb CT-scans. To evaluate algorithms’ sensitivity to the operator-dependent reconstruction procedure, the tibia, patella and femur of each CT-scan were each reconstructed once by three different operators.Our algorithms use principal inertia axis (PIA), cross-sectional area, surface normal orientations and curvature data to identify the bone region underneath articular surfaces (ASs). Then geometric primitives are fitted to ASs, and the ACSs are constructed from the geometric primitive points and/or axes. For each bone type, the algorithm displaying the least inter-operator variability is identified. The best femur algorithm fits a cylinder to posterior condyle ASs and a sphere to the femoral head, average axis deviations: 0.12°, position differences: 0.20 mm. The best patella algorithm identifies the AS PIAs, average axis deviations: 0.91°, position differences: 0.19 mm. The best tibia algorithm finds the ankle AS center and the 1st PIA of a layer around a plane fitted to condyle ASs, average axis deviations: 0.38°, position differences: 0.27 mm.  相似文献   

11.
Marker-based dynamic functional or regression methods are used to compute joint centre locations that can be used to improve linear scaling of the pelvis in musculoskeletal models, although large errors have been reported using these methods. This study aimed to investigate if statistical shape models could improve prediction of the hip joint centre (HJC) location. The inclusion of complete pelvis imaging data from computed tomography (CT) was also explored to determine if free-form deformation techniques could further improve HJC estimates. Mean Euclidean distance errors were calculated between HJC from CT and estimates from shape modelling methods, and functional- and regression-based linear scaling approaches. The HJC of a generic musculoskeletal model was also perturbed to compute the root-mean squared error (RMSE) of the hip muscle moment arms between the reference HJC obtained from CT and the different scaling methods. Shape modelling without medical imaging data significantly reduced HJC location error estimates (11.4 ± 3.3 mm) compared to functional (36.9 ± 17.5 mm, p = <0.001) and regression (31.2 ± 15 mm, p = <0.001) methods. The addition of complete pelvis imaging data to the shape modelling workflow further reduced HJC error estimates compared to no imaging (6.6 ± 3.1 mm, p = 0.002). Average RMSE were greatest for the hip flexor and extensor muscle groups using the functional (16.71 mm and 8.87 mm respectively) and regression methods (16.15 mm and 9.97 mm respectively). The effects on moment-arms were less substantial for the shape modelling methods, ranging from 0.05 to 3.2 mm. Shape modelling methods improved HJC location and muscle moment-arm estimates compared to linear scaling of musculoskeletal models in patients with hip osteoarthritis.  相似文献   

12.
We analyzed the sphericity of the femoral head of dysplastic hips. Using standard anterior-posterior radiographs of the hips, we assessed the femoral head's deviation from a spherical shape using a computer algorithm and via Severin grading. The method presented could serve as a useful tool to quantify differences in sphericity in cases where it is difficult to grade the hip radiologically.  相似文献   

13.
Many methodologies exist to predict the hip joint center (HJC), of which regression based on anatomical landmarks appear most common. Despite the fact that predicted HJC locations vary depending upon chosen method, inter-study comparisons and inferences about populations are commonly made. The purpose of this study was to create a normative database of hip and knee biomechanics during walking, running, and single leg landings based on five commonly utilized HJC methods to serve as a reference for inter-study comparisons. Secondarily, we devised to provide comparisons of peak knee angles and hip angles, moments, and powers from the five HJC methods. Thirty healthy young adults performed walking, running, and single leg landing tasks at self-selected speeds (walking/running) and at 90% of their maximum jump height (landing). Three-dimensional motion capture and ground reaction forces were collected during all tasks. Five different HJC prediction methods: Bell, Davis, Hara, Harrington, and Greater Trochanter were implemented separately in a 6 degree of freedom model. Predicted HJC locations, direct kinematics, and inverse dynamics were computed for all tasks. Predicted HJC mediolateral, anteroposterior, and superior-inferior locations differed between methods by an average of 1.3, 2.9, and 1.4 cm, respectively. A database was created using the mean of all subjects for all five methods. In addition, one-way ANOVAs were used to compare triplanar peak angles, moments, and powers between the methods. The database of hip and knee biomechanics illustrates (1) variability between methods increases with more dynamic tasks (running/landing vs. walking) and (2) frontal and transverse plane hip and knee biomechanics are more variable between methods. Comparisons between methods found 38 and 16 main effect differences in hip and knee biomechanics, respectively. The Greater Trochanter method provided the most differences compared with other methods, while the Davis method provided the least differences. The database constructed provides an important reference for inter-study comparisons and details the impact of anatomical regression methods for predicting the HJC.  相似文献   

14.
The objective of the current study was to use fluoroscopy to accurately determine the three-dimensional (3D), in vivo, weight-bearing kinematics of 10 normal and five anterior cruciate ligament deficient (ACLD) knees. Patient-specific bone models were derived from computed tomography (CT) data. 3D computer bone models of each subject's femur, tibia, and fibula were recreated from the CT 3D bone density data. Using a model-based 3D-to-2D imaging technique registered CT images were precisely fit onto fluoroscopic images, the full six degrees of freedom motion of the bones was measured from the images. The computer-generated 3D models of each subject's femur and tibia were precisely registered to the 2D digital fluoroscopic images using an optimization algorithm that automatically adjusts the pose of the model at various flexion/extension angles. Each subject performed a weight-bearing deep knee bend while under dynamic fluoroscopic surveillance. All 10 normal knees experienced posterior femoral translation of the lateral condyle and minimal change in position of the medial condyle with progressive knee flexion. The average amount of posterior femoral translation of the lateral condyle was 21.07 mm, whereas the average medial condyle translation was 1.94 mm, in the posterior direction. In contrast, all five ACLD knees experienced considerable change in the position of the medial condyle. The average amount of posterior femoral translation of the lateral condyle was 17.00 mm, while the medial condyle translation was 4.65 mm, in the posterior direction. In addition, the helical axis of motion was determined between maximum flexion and extension. A considerable difference was found between the center of rotation locations of the normal and ACLD subjects, with ACLD subjects exhibiting substantially higher variance in kinematic patterns.  相似文献   

15.
目的:分析介入治疗对于成人非创伤性股骨头缺血性坏死的疗效。方法:采用介入方法治疗95例共117髋非创伤性股骨头缺血性坏死。对比介入治疗前后DSA造影分型结果及血供异常例数。结果:117患髋中,Ia型的31病髋中,11髋(35.48%)介入治疗后动脉主干再通;Ib型的27髋中,24髋(88.89%)介入治疗后分支再通;II型的11髋中,5髋(45.45%)实质期股骨头缺损面积缩小;III型的10髋中,8髋(80.00%)静脉期见股骨头浓密染色明显减轻;Ⅳ型的33髋中,28髋(84.85%)可见动脉主干再通、分支增粗、实质期股骨头缺损面积缩小和静脉期股骨头染色减轻等。治疗前117病髋异常率为95.73%。经过介入治疗后,异常率为30.77%。治疗后异常率明显低于治疗前异常率(P〈0.01)。结论:介入治疗可有效改善非创伤性股骨头缺血性坏死血供异常,增加股骨头血供,具有操作简单、创伤小、疗效确切等优点。关键阗:股骨头缺血性坏死;介入治疗;数字减影血管造影  相似文献   

16.
In clinical routine, lower limb analysis relies on conventional X-ray (2D view) or computerised tomography (CT) Scan (lying position). However, these methods do not allow 3D analysis in standing position. The aim of this study is to propose a fast and accurate 3D-reconstruction-method based on parametric models and statistical inferences from biplanar X-rays with clinical measurements' (CM) assessment in standing position for a clinical routine use. For the reproducibility study, the 95% CI was under 2.7° for all lower limbs' angular measurements except for tibial torsion, femoral torsion and tibiofemoral rotation (?相似文献   

17.
An automated image-matching technique is presented to assess alignment of the entire lower extremity for normal and implanted knees and the positioning of implants with respect to bone. Sawbone femur and tibia and femoral and tibial components of a total knee arthroplasty system were used. Three spherical markers were attached to each sawbone and each component to define the local coordinate system. Outlines of the three-dimensional (3D) bone models and component computer-aided design (CAD) models were projected onto extracted contours of the femur, tibia, and implants in frontal and oblique X-ray images. Three-dimensional position of each model was recovered by minimizing the difference between the projected outline and the contour. Median values of the absolute error in estimating relative positions were within 0.5 mm and 0.6° for the femur with respect to the tibia, 0.5 mm and 0.5° for the femoral component with respect to the tibial component, 0.6 mm and 0.6° for the femoral component with respect to the femur, and 0.5 mm and 0.4° for the tibial component with respect to the tibia, indicating significant improvements when compared to manually obtained results.  相似文献   

18.
Hip loading affects the development of hip osteoarthritis, bone remodelling and osseointegration of implants. In this study, we analyzed the effect of subject-specific modelling of hip geometry and hip joint centre (HJC) location on the quantification of hip joint moments, muscle moments and hip contact forces during gait, using musculoskeletal modelling, inverse dynamic analysis and static optimization. For 10 subjects, hip joint moments, muscle moments and hip loading in terms of magnitude and orientation were quantified using three different model types, each including a different amount of subject-specific detail: (1) a generic scaled musculoskeletal model, (2) a generic scaled musculoskeletal model with subject-specific hip geometry (femoral anteversion, neck-length and neck-shaft angle) and (3) a generic scaled musculoskeletal model with subject-specific hip geometry including HJC location. Subject-specific geometry and HJC location were derived from CT. Significant differences were found between the three model types in HJC location, hip flexion–extension moment and inclination angle of the total contact force in the frontal plane. No model agreement was found between the three model types for the calculation of contact forces in terms of magnitude and orientations, and muscle moments. Therefore, we suggest that personalized models with individualized hip joint geometry and HJC location should be used for the quantification of hip loading. For biomechanical analyses aiming to understand modified hip joint loading, and planning hip surgery in patients with osteoarthritis, the amount of subject-specific detail, related to bone geometry and joint centre location in the musculoskeletal models used, needs to be considered.  相似文献   

19.
Hip joint centre (HJC) localization is used in several biomedical applications, such as movement analysis and computer-assisted orthopaedic surgery.The purpose of this study was to validate in vitro a new algorithm (MC-pivoting) for HJC computation and to compare its performances with the state-of-the-art (least square approach–LSA). The MC-pivoting algorithm iteratively searches for the 3D coordinates of the point belonging to the femoral bone that, during the circumduction of the femur around the hip joint (pivoting), runs the minimum length trajectory. The algorithm was initialized with a point distribution that can be considered close to a Monte Carlo simulation sampling all around the LSA estimate.The performances of the MC-pivoting algorithm, compared with LSA, were evaluated with tests on cadavers. Dynamic reference frames were applied on both the femur and the pelvis and were tracked by an optical localizer.Results proved the algorithm accuracy (1.7 mm±1.6, 2.3—median value±quartiles), reliability (smaller upper quartiles of the errors distribution with respect to LSA) and robustness (reduction of the errors also in case of large pelvis displacements).  相似文献   

20.
This investigation of microstructure in the human proximal femur probes the relationship between the parameters of the FRAX index of fracture risk and the parameters of bone microstructure. The specificity of fracture sites at the proximal femur raises the question of whether trabecular parameters are site-specific during post-menopause, before occurrence of fragility fracture. The donated proximal femurs of sixteen post-menopausal women in the sixth and seventh decades of life, free of metabolic pathologies and therapeutic interventions that could have altered the bone tissue, constituted the material of the study. We assessed bone mineral density of the proximal femurs by dual energy X-ray absorptiometry and then sectioned the femurs through the center of the femoral head and along the femoral neck axis. For each proximal femur, morphometry of trabeculae was conducted on the plane of the section divided into conventional regions and sub-regions consistent with the previously identified trabecular families that provide regions of relatively homogeneous microstructure. Mean trabecular width and percent bone area were calculated at such sites. Our findings indicate that each of mean trabecular width and percent bone area vary within each proximal femur independently from each other, with dependence on site. Both trabecular parameters show significant differences between pairs of sites. We speculate that a high FRAX index at the hip corresponds to a reduced percent bone area among sites that gives a more homogeneous and less site-specific quality to the proximal femur. This phenomenon may render the local tissue less able to carry out the expected mechanical function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号