首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Pregnane X receptor (PXR) agonism has been shown to affect multiple steps in both the synthesis and catabolism of HDL, but its integrated effect on HDL metabolism in vivo remains unclear. The aim of this study was to evaluate the net effect of PXR agonism on HDL metabolism in ApoE?3-Leiden (E3L) and E3L.CETP mice, well-established models for human-like lipoprotein metabolism. Female mice were fed a diet with increasing amounts of the potent PXR agonist 5-pregnen-3β-ol-20-one-16α-carbonitrile (PCN). In E3L and E3L.CETP mice, PCN increased liver lipids as well as plasma cholesterol and triglycerides. However, whereas PCN increased cholesterol contained in large HDL-1 particles in E3L mice, it dose-dependently decreased HDL-cholesterol in E3L.CETP mice, indicating that CETP expression dominates the effect of PCN on HDL metabolism. Analysis of the hepatic expression of genes involved in HDL metabolism showed that PCN decreased expression of genes involved in HDL synthesis (Abca1, Apoa1), maturation (Lcat, Pltp) and clearance (Sr-b1). The HDL-increasing effect of PCN, observed in E3L mice, is likely caused by a marked decrease in hepatic SR-BI protein expression, and completely reversed by CETP expression. We conclude that chronic PXR agonism dose-dependently reduces plasma HDL-cholesterol in the presence of CETP.  相似文献   

3.
4.
5.
Brown and beige adipocytes dissipate energy as heat. Thus, the activation of brown adipocytes and the emergence of beige adipocytes in white adipose tissue (WAT) are suggested to be useful for preventing and treating obesity. Although β3-adrenergic receptor activation is known to stimulate lipolysis and activation of brown and beige adipocytes, fat depot–dependent changes in metabolite concentrations are not fully elucidated. The current study examined the effect of treatment with CL-316,243, a β3-adrenergic receptor agonist, on the relative abundance of metabolites in interscapular brown adipose tissue (iBAT), inguinal WAT (ingWAT), and epididymal WAT (epiWAT). Intraperitoneal injection of CL-316,243 (1 mg/kg) for 3 consecutive days increased the relative abundance of several glycolysis-related metabolites in all examined fat depots. The cellular concentrations of metabolites involved in the citric acid cycle and of free amino acids were also increased in epiWAT by CL-316,243. CL-316,243 increased the expression levels of several enzymes and transporters related to glucose metabolism and amino acid catabolism in ingWAT and iBAT but not in epiWAT. CL-316,243 also induced the emergence of more beige adipocytes in ingWAT than in epiWAT. Furthermore, adipocytes surrounded by macrophages were detected in the epiWAT of mice given CL-316,243. The current study reveals the fat depot–dependent modulation of cellular metabolites in CL-316,243-treated mice, presumably resulting from differential regulation of cell metabolism in different cell populations.  相似文献   

6.
7.
Sequential processing of amyloid precursor protein (APP) by β- and γ-secretase leads to the generation of amyloid-β (Aβ) peptides, which plays a central role in Alzheimer's disease pathogenesis. APP is capable of forming a homodimer through its extracellular domain as well as transmembrane GXXXG motifs. A number of reports have shown that dimerization of APP modulates Aβ production. On the other hand, we have previously reported that N-cadherin-based synaptic contact is tightly linked to Aβ production. In the present report, we investigated the effect of N-cadherin expression on APP dimerization and metabolism. Here, we demonstrate that N-cadherin expression facilitates cis-dimerization of APP. Moreover, N-cadherin expression led to increased production of Aβ as well as soluble APPβ, indicating that β-secretase-mediated cleavage of APP is enhanced. Interestingly, N-cadherin expression affected neither dimerization of C99 nor Aβ production from C99, suggesting that the effect of N-cadherin on APP metabolism is mediated through APP extracellular domain. We confirmed that N-cadherin enhances APP dimerization by a novel luciferase-complementation assay, which could be a platform for drug screening on a high-throughput basis. Taken together, our results suggest that modulation of APP dimerization state could be one of mechanisms, which links synaptic contact and Aβ production.  相似文献   

8.
C-reactive protein (CRP) is a significant contributor to atherosclerosis and a powerful predictor of cardiovascular risk. The role of CRP in endothelial cell (EC) activation has been extensively investigated, but the underlying mechanisms have not been fully elucidated. The effect of glycogen synthase kinase-3β (GSK-3β) on CRP-induced EC activation was evaluated in this study. We observed that CRP decreased endothelial nitric oxide synthase (eNOS) activity during EC activation. CRP also activated GSK-3β by dephosphorylating its Ser9 level and reducing β-catenin protein expression in a time-dependent manner. We also found that the GSK-3β inhibitors TDZD-8 and SB415286 partially restored eNOS activity and suppressed the release of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 from ECs. These data provide new evidence for the involvement of GSK-3β in EC activation.  相似文献   

9.
Although NF-κB1 p50/p105 has critical roles in immunity, the mechanism by which NF-κB1 regulates inflammatory responses is unclear. In this study, we analyzed the gene expression profile of LPS-stimulated Nfkb1(-/-) macrophages that lack both p50 and p105. Deficiency of p50/p105 selectively increased the expression of IFN-responsive genes, which correlated with increased IFN-β expression and STAT1 phosphorylation. IFN Ab-blocking experiments indicated that increased STAT1 phosphorylation and expression of IFN-responsive genes observed in the absence of p50/p105 depended upon autocrine IFN-β production. Markedly higher serum levels of IFN-β were observed in Nfkb1(-/-) mice than in wild-type mice following LPS injection, demonstrating that Nfkb1 inhibits IFN-β production under physiological conditions. TPL-2, a mitogen-activated protein kinase kinase kinase stabilized by association with the C-terminal ankyrin repeat domain of p105, negatively regulates LPS-induced IFN-β production by macrophages via activation of ERK MAPK. Retroviral expression of TPL-2 in Nfkb1(-/-) macrophages, which are deficient in endogenous TPL-2, reduced LPS-induced IFN-β secretion. Expression of the C-terminal ankyrin repeat domain of p105 in Nfkb1(-/-) macrophages, which rescued LPS activation of ERK, also inhibited IFN-β expression. These data indicate that p50/p105 negatively regulates LPS-induced IFN signaling in macrophages by stabilizing TPL-2, thereby facilitating activation of ERK.  相似文献   

10.
Hepatoblastoma (HB) is the predominant hepatic neoplasm in infants and young children. Sorafenib has been used to treat adult and pediatric hepatocellular carcinoma. However, efficacy of monotherapy of sorafenib in HB is not sustained. In this study, we tested a possible combinatory therapy of sorafenib with the CCAAT/enhancer-binding proteins (C/EBP) overexpression in HB cell line. Firstly, we evaluated the expression level of C/EBPβ in the patients with HB by analyzing The Cancer Genome Atlas data. Lower level of C/EBPβ was observed in tumor tissues in comparison with matched normal tissues. Next, we observed that combination of sorafenib and C/EBPβ overexpression led to dramatic growth and migration inhibition of live tumor cells which implied promising probability for clinical trial. Mechanistically, C/EBPβ which can be downregulated by Ras v12, augmented messenger RNA and protein levels of p53. These data suggested that a combination of sorafenib and C/EBPβ overexpression inhibited tumor growth synergistically and provided a promising approach to treat HB.  相似文献   

11.
Genetically modified mice have been widely used in the field of β-cell research. However, analysis of results gathered using genetically modified organisms should be interpreted carefully as the results may be confounded by several factors. Here, we showed the ectopic serotonin (5-HT) production in β-cells of RIP-CreMgn, MIP-GFP, and MIP-Cre/ERT mice. These mice contained a human growth hormone (hGH) cassette to enhance transgene expression and hGH expression and Stat5 phosphorylation were detected in pancreatic islets of these mice. The expression level of tryptophan hydroxylase 1 (Tph1) was upregulated in pancreatic islets of transgenic mice with an hGH cassette but not in transgenic mice without an hGH cassette. Ectopic 5-HT production was not observed in β-cell-specific prolactin receptor (Prlr) knockout mice or Stat5 knockout mice crossed with RIP-CreMgn. We further confirmed that 5-HT production in β-cells of several transgenic mice was induced by hGH expression followed by the activation of the Prlr-Stat5-Tph1 pathway. These findings indicate that results obtained using transgenic mice containing the hGH cassette should be interpreted with care.  相似文献   

12.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by activation and proliferation of autoreactive T cells and B cells. We examined changes in cell cycle progression of T cells from MRL/lpr mice with or without allogenic bone marrow mesenchymal stem cells (BMMSCs) treatment and analyzed the expression of cell cycle associated proteins. In addition, the Akt/GSK3β protein kinase cascade was studied. We demonstrated that high-dose MSCs transplantation effectively ameliorated disease activity in MRL/lpr mice. BMMSCs treatment inhibited G1/S transition of the abnormal lupus T lymphocytes. Moreover, it increased the expression of p21(WAF1/CIP1) and p27(Kip1) and decreased the expression of CDK2. Furthermore, high-dose MSCs inhibited abnormal activation of the Akt/GSK3β signaling pathway of T cells from MRL/lpr mice. Our results suggest that high-dose BMMSCs transplantation successfully treated MRL/lpr lupus mice by inhibiting abnormal activation of Akt/GSK3β signaling pathway of T cells.  相似文献   

13.

Background

Resveratrol is a key component of red wine that has been reported to have anti-carcinogenic and anti-aging properties. Additional studies conducted in vitro and in animal models suggested anti-inflammatory properties. However, data from primary human immune cells and in vivo studies are limited.

Methods

A pilot study was performed including 10 healthy volunteers. Plasma cytokine levels were measured over 48 h after oral application of 5 g resveratrol.To verify the in vivo findings, cytokine release and gene expression in human peripheral blood mononuclear cells (PBMC) and/or monocytes was assessed after treatment with resveratrol or its metabolites and stimulation with several toll-like receptor (TLR)-agonists. Additionally, the impact on intracellular signaling pathways was analyzed using a reporter cell line and Western blotting.

Results

Resveratrol treated individuals showed a significant increase in tumor necrosis factor-α (TNF-α) levels 24 h after treatment compared to baseline. Studies using human PBMC or isolated monocytes confirmed potentiation of TNF-α production with different TLR agonists, while interleukin (IL)-10 was inhibited. Moreover, we observed significantly enhanced nuclear factor ‘kappa-light-chain-enhancer’ of activated B-cells (NF-κB) activation using a reporter cell line and found increased phosphorylation of p105, which is indicative of alternative NF-κB pathway activation.

General significance

By administering resveratrol to healthy humans and utilizing primary immune cells we were able to detect TNF-α enhancing properties of the agent. In parallel, we found enhanced alternative NF-κB activation. We report on a novel pro-inflammatory property of resveratrol which has to be considered in concepts of its biologic activity.  相似文献   

14.
15.
BackgroundAlzheimer's disease (AD) is the most common neurodegenerative disease. Deposition of amyloid β plaques (Aβ) and neurofibrillary tangles (NFTs) is the key pathological hallmark of AD. Accumulating evidence suggest that impairment of autophagy-lysosomal pathway (ALP) plays key roles in AD pathology.PurposeThe present study aims to assess the neuroprotective effects of Qingyangshen (QYS), a Chinese herbal medicine, in AD cellular and animal models and to determine its underlying mechanisms involving ALP regulation.MethodsQYS extract was prepared and its chemical components were characterized by LC/MS. Then the pharmacokinetics and acute toxicity of QYS extract were evaluated. The neuroprotective effects of QYS extract were determined in 3XTg AD mice, by using a series of behavioral tests and biochemical assays, and the mechanisms were examined in vitro.ResultsOral administration of QYS extract improved learning and spatial memory, reduced carboxy-terminal fragments (CTFs), amyloid precursor protein (APP), Aβ and Tau aggregates, and inhibited microgliosis and astrocytosis in the brains of 3XTg mice. Mechanistically, QYS extract increased the expression of PPARα and TFEB, and promoted ALP both in vivo and in vitro.ConclusionQYS attenuates AD pathology, and improves cognitive function in 3XTg mice, which may be mediated by activation of PPARα-TFEB pathway and the subsequent ALP enhancement. Therefore, QYS may be a promising herbal material for further anti-AD drug discovery.  相似文献   

16.
17.
18.
Alzheimer’s disease (AD) is defined both by its progressive cognitive deterioration and hallmark increase in neuronal Aβ plaque formation. However, many of the underlying neurobiological facets of this disease are still being elucidated. Previous research has demonstrated that production of neuronal hydrogen sulfide (H2S) is significantly decreased in patients with AD. Moreover, systemic plasma H2S levels are negatively correlated with its severity. However, how a decrease in H2S production might be correlated with either the etiology or pathophysiology of AD remains unknown. To better understand the role of H2S in AD, we examined both levels of H2S and the expression and activity H2S-synthesizing enzyme (cystathionine beta synthase or CBS) in an APP/PS1 transgenic mouse line at 3, 6, 9 and 12 months. After intraperitoneal (i.p.) administration of an H2S donor (NaHS) into APP/PS1 mice, application of exogenous H2S resulted in improved spatial learning and memory acquisition in APP/PS1 mice. H2S administration also led to significant decrease in extracellular levels of Aβ40 and Aβ42, the expression of BACE1 and PS1, and a significant increase of ADAM17 expression. Similarly, an increase in non-amyloidogenic C83 fragment generation and a decrease in amyloidogenic C99 fragment generation were also observed. Thus, NaHS application resulted in a shift from the plaque-forming beta pathway to the non-plaque forming alpha pathway of APP cleavage in 6 and 12 month APP/PS1 mice. These results indicate the importance of H2S to AD severity and that administration of exogenous H2S can promote a non-amyloidogenic processing of APP.  相似文献   

19.

Background

Cytokines regulated by the inflammasome pathway have been extensively implicated in various age-related immune pathologies. We set out to elucidate the contribution of the nod-like receptor protein 3 (NLRP3) inflammasome pathway to the previously described deficiencies in IL-1β production by macrophages from aged mice. We examined the production of pro-IL-1β and its conversion into IL-1β as two separate steps and compared these cytokine responses in bone marrow derived macrophages from young (6–8 weeks) and aged (18–24 months) C57BL/6 mice.

Findings

Relative to macrophages from young mice, macrophages from aged mice produced less pro-IL-1β after TLR4 stimulation with LPS. However upon activation of the NLRP3 inflammasome with ATP, macrophages from young and aged mice were able to efficiently convert and secrete intracellular pro-cytokines as functional cytokines.

Conclusions

Lower levels of IL-1β production are a result of slower and lower overall production of pro-IL-1β in macrophages from aged mice.
  相似文献   

20.
The present study was designed to evaluate the specific role of protein kinase C (PKC) δ in methamphetamine (MA)-induced dopaminergic toxicity. A multiple-dose administration regimen of MA significantly increases PKCδ expression, while rottlerin, a PKCδ inhibitor, significantly attenuates MA-induced hyperthermia and behavioral deficits. These behavioral effects were not significantly observed in PKCδ antisense oligonucleotide (ASO)-treated- or PKCδ knockout (−/−)-mice. There were no MA-induced significant decreases of dopamine (DA) content or tyrosine hydroxylase (TH) expression in the striatum in rottlerin-treated-, ASO-treated- or PKCδ (−/−)-mice. The administration of MA also results in a significant decrease of TH phosphorylation at ser 40, but not ser 31, while the inhibition of PKCδ consistently and significantly attenuates MA-induced reduction in the phosphorylation of TH at ser 40. Therefore, these results suggest that the MA-induced enhancement of PKCδ expression is a critical factor in the impairment of TH phosphorylation at ser 40 and that pharmacological or genetic inhibition of PKCδ may be protective against MA-induced dopaminergic neurotoxicity in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号