首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Encapsulation of hydrophobic agents with nanocarriers is challenging. Therefore, we have sought to use nanoscale artificial oil bodies (NOBs) as an alternative delivery carrier. To constitute NOBs, caleosin (Cal), a structural protein of plant seed oil bodies, was first fused with ZH2 (Cal-ZH2). ZH2 is a bivalent anti-HER2/neu affibody with a high affinity towards the HER2/neu receptor. After overproduction in Escherichia coli, insoluble Cal-ZH2 was isolated and used to assemble NOBs in one step. Consequently, resulting NOBs had a zeta potential around −49 mV and ranged in size from 150 to 200 nm. Upon loading with a hydrophobic fluorescence dye, NOBs were found to be selectively internalized into HER2/neu-positive tumor cells. Further analyses showed that more than 90% cells were invaded by dye-loaded NOBs and the cargo dye was released in cells with time. In addition, the in vitro assay revealed the release of the dye from NOBs in a slow and prolong manner. Overall, these results indicate the potential of Cal-based NOBs as a delivery vehicle.  相似文献   

2.
HER2/neu-overexpressing tumor cell lines are relatively resistant to lymphokine-activated killer (LAK) cell cytotoxicity when compared toHER2/neu-nonexpressing lines.HER2/neu + targets were also resistant to binding by LAK large granular lymphocytes (LGL) as shown by visualization at the single-cell level, a target monolayer binding assay and in cold target inhibition experiments.HER2/neu + LAK-resistant ovarian cell lines demonstrated an absence of ICAM-1 expression while expression of LFA-3, N-CAM, laminin and 1 integrins was comparable to that ofHER2/neu targets. In contrast, theHER2/neu + breast cell line, SKBR-3, which was also resistant to lysis and binding by LAK LGL, demonstrated normal expression of ICAM-1. Anti-ICAM-1 antibodies blocked binding and lysis ofHER2/neu carcinoma targets by LAK cells, further supporting the notion that lack of ICAM-1 expression onHER2/neu + cells contributes to their resistance. The modest binding and lysis ofHER2/neu + targets by LAK cells was significantly inhibited by anti-LFA-1 antibodies, suggesting the existence of another counter-receptor for LFA-1 onHER2/neu + targets. The following also supported deficiencies in post-binding events whenHER2/neu + cells resisted the lytic activity of LAK cells: (a) when the relative resistance to effector cell binding was overcome by exogenous lectin,HER2/neu + cell lines were still resistant to LAK cytolysis, and (b)HER2/neu + targets were resistant to perforin-containing granule extracts obtained from the CTLL-R8 cytotoxic lymphocyte cell line. These results indicate that deficiency in effector binding as well as post-binding events contributes to the resistance ofHER2/neu-overexpressing tumor targets to LAK-cell-mediated lysis.Supported by research funds of the Veteran's Administration, the California Institute for Cancer Research and Jonsson Cancer Center core grant CA 16042 funded by NIH  相似文献   

3.
Earlier, we have shown that spontaneously isolated non‐pathogenic bacteria Serratia grimesii and Serratia proteamaculans invade eukaryotic cells, provided that they synthesize thermolysin‐like metalloproteases ECP32/grimelysin or protealysin characterized by high specificity towards actin. To address the question of whether the proteases are active players in entry of these bacteria into host cells, in this work, human larynx carcinoma Hep‐2 cells were infected with recombinant Escherichia coli expressing grimelysin or protealysin. Using confocal and electron microscopy, we have found that the recombinant bacteria, whose extracts limitedly cleaved actin, were internalized within the eukaryotic cells residing both in vacuoles and free in cytoplasm. The E. coli‐carrying plasmids without inserts of grimelysin or protealysin gene did not enter Hep‐2 cells. Moreover, internalization of non‐invasive E. coli was not observed in the presence of protealysin introduced into the culture medium. These results are consistent with the direct participation of ECP32/grimelysin and protealysin in entry of bacteria into the host cells. We assume that ECP32/grimelysin and protealysin mediate invasion being injected into the eukaryotic cell and that the high specificity of the enzyme towards actin may be a factor contributed to the bacteria internalization.  相似文献   

4.
Serratia grimesii are non‐pathogenic bacteria capable, however, to invade eukaryotic cells provided that they synthesize intracellular metalloprotease grimelysin (Bozhokina et al. [2011] Cell. Biol. Int. 35: 111–118). To elucidate how invasion of grimelysin containing bacteria depends on physiological state of host cells, we studied the effect of N‐acetylcysteine (NAC) on susceptibility of HeLa cells to invasion by the wild‐type S. grimesii and recombinant E. coli expressing grimelysin gene. Incubation of HeLa cells with 10 mM NAC resulted in changes of cell morphology and disassembly of actin cytoskeleton that were reversed when NAC was removed from the culture medium. Both in the presence of NAC and upon its removal, the entry of grimelysin producing bacteria increased by a factor of 1.5–2 and 3–3.5 for wild‐type S. grimesii and recombinant E. coli, respectively. This effect does not correlate with cytoskeleton rearrangements but may be due to the NAC‐induced up‐regulation of cell surface receptors playing a role in cell adhesion and cell–cell junctions. A twofold difference in the efficiency of S. grimesii and recombinant E. coli to enter the NAC‐treated cells suggests that the entry of the wild‐type and recombinant bacteria occurs via different receptors which activity is differently affected by NAC. J. Cell. Biochem. 114: 1568–1574, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
We have previously reported that the antibody fusion proteins anti-HER2/neu IgG3 fused to IL-12 [(IL-12)-IgG3] or GM-CSF [IgG3-(GM-CSF)] independently or in combination are effective anti-tumor agents against D2F2/E2 murine mammary cancer cells expressing human HER2/neu in the peritoneum. Importantly, the long-term survivors were immune to the subcutaneous challenge with D2F2/E2 and the parental D2F2 not expressing HER2/neu. We now show that these long-term survivors also exhibit significant protection against subsequent subcutaneous challenge with the murine colon carcinoma CT26-HER2/neu, and later against subcutaneous challenge with the parental CT26. These results suggest that the long-term systemic protection against mammary cancer elicited by treatment with antibody–cytokine fusion proteins can be extended to prevent the growth of a tumor from different origin expressing HER2/neu, and that this protection is not limited to this antigen alone, since it also prevented the growth of the parental tumor cells.  相似文献   

6.
7.
 The neu proto-oncogene encodes a plasma membrane protein belonging to the epidermal growth factor receptor family. The cell line B104, derived from a BDIX rat neuroblastoma, carries a point mutation in neu, and forms a tumor when injected into these rats. The human homologue of the neu oncogene (here called HER2) is overexpressed in certain types of cancer. Rats were immunized with HER2 protein (HER2) to investigate a possible cross-reaction between the homologous proteins which could protect them against subsequent inoculation with B104. Specific antibody in the serum was measured by cell-based enzyme-linked immunosorbent assay and fluorescence immunocytochemistry, and delayed-type hypersensitivity by an ear assay. Sera from animals immunized with the HER2 extracellular domain (HER2-ECD) reacted with both HER2- and neu-expressing cells. In the ear assay, a significant cellular response to both HER2-ECD (P <0.05) and neu protein (P <0.001) was observed in HER2-ECD-immunized rats. However, the growth of B104 tumors in rats was not affected by preimmunization with HER2-ECD. The results indicate that an autoreactive immune response to neu was induced by immunization with HER2-ECD, but was too weak to affect the growth of the neu-bearing tumor. Received: 9 November 1995 / Accepted: 2 February 1996  相似文献   

8.
HER2-specific affibody molecules in different formats have previously been shown to be useful tumor targeting agents for radionuclide-based imaging and therapy applications, but their biological effect on tumor cells is not well known. In this study, two dimeric ((ZHER2:4)2 and (ZHER2:342)2) and one monomeric (ZHER2:342) HER2-specific affibody molecules are investigated with respect to biological activity. Both (ZHER2:4)2 and (ZHER2:342)2 were found to decrease the growth rate of SKBR-3 cells to the same extent as the antibody trastuzumab. When the substances were removed, the cells treated with the dimeric affibody molecules continued to be growth suppressed while the cells treated with trastuzumab immediately resumed normal proliferation. The effects of ZHER2:342 were minor on both proliferation and cell signaling. The dimeric (ZHER2:4)2 and (ZHER2:342)2 both reduced growth of SKBR-3 cells and may prove therapeutically useful either by themselves or as carriers of radionuclides or other cytotoxic agents.  相似文献   

9.
 In the present study we describe a novel murine tumor model in which the highly malignant murine B cell lymphoma 38C13 has been transduced with the cDNA encoding human tumor-associated antigen HER2/neu. This new cell line (38C13-HER2/neu) showed stable surface expression but not secretion of human HER2/neu. It also maintained expression of the idiotype (Id) of the surface immunoglobulin of 38C13, which serves as another tumor-associated antigen. Surprisingly, spontaneous tumor regression was observed following s.c. but not i.v. injection of 38C13-HER2/neu cells in immunocompetent syngeneic mice. Regression was more frequently observed with larger tumor cell challenges and was mediated through immunological mechanisms because it was not observed in syngeneic immunodeficient mice. Mice that showed complete tumor regression were immune to challenge with the parental cell line 38C13 and V1, a variant of 38C13 that does not express the Id. Immunity could be transferred with sera, suggesting that an antibody response mediated rejection and immunity. Continuously growing s.c. tumors as well as metastatic tumors obtained after the i.v. injection of 38C13-HER2/neu maintained expression of human HER2/neu, which can serve as a target for active immunotherapy. As spontaneous tumor regression has not been observed in other human murine models expressing human HER2/neu, our results illustrate the enormous differences that can exist among different murine tumors expressing the same antigen. The present model provides a useful tool for the study of the mechanisms of protective immunity to B cell lymphoma and for the evaluation of different therapeutic approaches based on the stimulation or suppression of the immune response. Received: 2 August 2000 / Accepted: 20 September 2000  相似文献   

10.
A novel HER2-targeted carrier was developed using bionanocapsules (BNCs). Bionanocapsules (BNCs) are 100-nm hollow nanoparticles composed of the l-protein of hepatitis B virus surface antigen. An affibody of HER2 was genetically displayed on the BNC surface (ZHER2-BNC). For the investigation of binding affinity, ZHER2-BNC was incubated with the cancer cell lines SK-BR-3 (HER2 positive), and MDA-MB-231 (HER2 negative). For analysis of HER2 targeting specificity, ZHER2-BNC or ZWT-BNC (without affibody) was incubated with both SK-BR-3 and MDA-MB-231 cells by time lapse and concentration. For the delivery of encapsulated molecules (calcein), fluorescence of ZHER2-BNC mixed with liposomes was also compared with that of ZWT-BNC and nude liposomes by incubation with SK-BR-3 cells. As a result, ZHER2-BNC-liposome complex demonstrated the delivery to HER2-expressing cells (SK-BR-3) with a high degree of specificity. This indicates that genetically engineered BNCs are promising carrier for cancer treatment.  相似文献   

11.
12.
This study is the first to report that Spirulina complex polysaccharides (CPS) suppress glioma growth by down‐regulating angiogenesis via a Toll‐like receptor 4 signal. Murine RSV‐M glioma cells were implanted s.c. into C3H/HeN mice and TLR4 mutant C3H/HeJ mice. Treatment with either Spirulina CPS or Escherichia coli (E. coli) lipopolysaccharides (LPS) strongly suppressed RSV‐M glioma cell growth in C3H/HeN, but not C3H/HeJ, mice. Glioma cells stimulated production of interleukin (IL)‐17 in both C3H/HeN and C3H/HeJ tumor‐bearing mice. Treatment with E. coli LPS induced much greater IL‐17 production in tumor‐bearing C3H/HeN mice than in tumor‐bearing C3H/HeJ mice. In C3H/HeN mice, treatment with Spirulina CPS suppressed growth of re‐transplanted glioma; however, treatment with E. coli LPS did not, suggesting that Spirulina CPS enhance the immune response. Administration of anti‐cluster of differentiation (CD)8, anti‐CD4, anti‐CD8 antibodies, and anti‐asialo GM1 antibodies enhanced tumor growth, suggesting that T cells and natural killer cells or macrophages are involved in suppression of tumor growth by Spirulina CPS. Although anti‐interferon‐γ antibodies had no effect on glioma cell growth, anti‐IL‐17 antibodies administered four days after tumor transplantation suppressed growth similarly to treatment with Spirulina CPS. Less angiogenesis was observed in gliomas from Spirulina CPS‐treated mice than in those from saline‐ or E. coli LPS‐treated mice. These findings suggest that, in C3H/HeN mice, Spirulina CPS antagonize glioma cell growth by down‐regulating angiogenesis, and that this down‐regulation is mediated in part by regulating IL‐17 production.  相似文献   

13.

Background

Specific and efficient delivery of genes into targeted cells is a priority objective in non‐viral gene therapy. Polyethyleneimine‐based polyplexes have been reported to be good non‐viral transfection reagents. However, polyplex‐mediated DNA delivery occurs through a non‐specific mechanism. This article reports the construction of an immunopolyplex, a targeted non‐viral vector based on a polyplex backbone, and its application in gene transfer over human lymphoma cell lines.

Methods

Targeting elements (biotin‐labeled antibodies), which should recognize a specific element of the target cell membrane and promote nucleic acid entry into the cell, were attached to the polyplex backbone through a bridge protein (streptavidin). Immunopolyplex transfection activity was studied in several hematological cell lines [Jurkat (CD3+/CD19?), Granta 519 (CD3?/ CD19+), and J.RT3‐T3.5 (CD3?/CD19?)] using the EGFP gene as a reporter gene and anti‐CD3 and anti‐CD19 antibodies as targeting elements. Transfection activity was evaluated via green fluorescence per cell and the percentage of positive cells determined by flow cytometry.

Results

A significant selectivity of gene delivery was observed, since the anti‐CD3 immunopolyplex worked only in Jurkat cells while the anti‐CD19 immunopolyplex worked only in the Granta cell line. Moreover, transfection of a CD3+/CD3? cell mixture with anti‐CD3 immunopolyplexes showed up to 16‐fold more transfection in CD3+ than in CD3? cells. Several non‐specific transfection reagents showed poor or no transfection activity.

Conclusion

It is concluded that immunopolyplex is a good non‐viral vector for specific and selective nucleic acid delivery. Immunopolyplex design allows easy replacement of the targeting element (antibody) – the streptavidin–polyplex backbone remaining intact – thereby conferring high versatility. Copyright © 2002 John Wiley & Sons, Ltd.
  相似文献   

14.
The HER2/neu oncogene product, p185HER2/ neu , is overexpressed on the surface of many human breast cancers. Strains of transgenic mice have been developed that express the rat neu oncogene in mammary epithelial cells and develop spontaneous mammary tumors that overexpress p185 neu . This model provides an ideal system for testing interventions to prevent tumor development. In this study, we immunized neu-transgenic mice with a vaccine consisting of the extracellular domain of p185 neu (NeuECD). Immunized mice developed Neu-specific humoral immune responses, as measured by circulating anti-Neu antibodies in their sera, and cellular immune responses, as measured by lymphocyte proliferation to NeuECD in vitro. In addition, the subsequent development of mammary tumors was significantly lower in immunized mice than in controls and vaccine treatment was associated with a significant increase in median survival. Received: 10 September 1998 / Accepted: 17 November 1998  相似文献   

15.
Carbon nanotubes (CNTs) are allotropes of carbon, which have unique physical, mechanical, and electronic properties. Among various biomedical applications, CNTs also attract interest as nonviral gene delivery systems. Functionalization of CNTs with cationic groups enables delivery of negatively charged DNA into cells. In contrast to this well‐known strategy for DNA delivery, our approach included the covalent attachment of linearized plasmid DNA to carboxylated multiwalled CNTs (MWCNTs). Carboxyl groups were introduced onto MWCNTs by oxidative treatment, and then the carboxyl groups were activated by 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide (EDC). The whole pQE‐70 vector including the gene encoding green fluorescent protein (GFP) was subjected to polymerase chain reaction (PCR) using the modified nucleotide N6‐(6‐Amino)hexyl‐2′‐deoxyadenosine‐5′‐triphosphate. Hence, free amino groups were introduced onto the linearized plasmid. Covalent bonding between the amino‐modified plasmid DNA and the carboxylated MWCNTs was achieved via EDC chemistry. The resulting bioconjugate was successfully transformed into chemically competent Escherichia coli cells, without necessity of a heat‐shock step at 42°C. The presence of Ca2+ in transformation medium was required to neutralize the electrostatic repulsion between DNA and negatively charged outer layer of E. coli. The transformants, which were able to express GFP were inspected manually on ampicillin agar plates. Our study represents a novelty with respect to other noncovalent CNT gene delivery systems. Considering the interest for delivery of linear DNA fragments, our study could give insights into further studies. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:224–232, 2014  相似文献   

16.
Agrobacterium tumefaciens is a natural genetic engineer widely used to deliver DNA into various recipients, including plant, yeast and fungal cells. The bacterium can transfer single‐stranded DNA molecules (T–DNAs) and bacterial virulence proteins, including VirE2. However, neither the DNA nor the protein molecules have ever been directly visualized after the delivery. In this report, we adopted a split‐GFP approach: the small GFP fragment (GFP11) was inserted into VirE2 at a permissive site to create the VirE2‐GFP11 fusion, which was expressed in A. tumefaciens; and the large fragment (GFP1–10) was expressed in recipient cells. Upon delivery of VirE2‐GFP11 into the recipient cells, GFP fluorescence signals were visualized. VirE2‐GFP11 was functional like VirE2; the GFP fusion movement could indicate the trafficking of Agrobacterium‐delivered VirE2. As the natural host, all plant cells seen under a microscope received the VirE2 protein in a leaf‐infiltration assay; most of VirE2 moved at a speed of 1.3–3.1 μm sec?1 in a nearly linear direction, suggesting an active trafficking process. Inside plant cells, VirE2‐GFP formed filamentous structures of different lengths, even in the absence of T‐DNA. As a non‐natural host recipient, 51% of yeast cells received VirE2, which did not move inside yeast. All plant cells seen under a microscope transiently expressed the Agrobacterium‐delivered transgene, but only 0.2% yeast cells expressed the transgene. This indicates that Agrobacterium is a more efficient vector for protein delivery than T‐DNA transformation for a non‐natural host recipient: VirE2 trafficking is a limiting factor for the genetic transformation of a non‐natural host recipient. The split‐GFP approach could enable the real‐time visualization of VirE2 trafficking inside recipient cells.  相似文献   

17.
High‐throughput screens that dispense with the need for expensive synthetic Aβ peptide would be invaluable for identifying novel anti‐aggregants as potential treatments for Alzheimer's disease. A biosynthetic in vivo approach, using a recombinant fluorescent green fluorescent protein (GFP) reporter for the aggregation state of Aβ in Escherichia coli, has been reported by other workers. Here, inducible Aβ–GFP expression in E. coli was coupled to the concurrent constitutive production of a quasi‐random peptide library to screen for anti‐aggregant activity. To attempt to introduce greater robustness, mCherry was also co‐expressed as an internal fluorescence standard to allow ratiometric comparison between samples. However, fluctuations in mCherry expression levels, as well as a low dynamic range of GFP output between positive and negative anti‐aggregant peptides, highlighted limitations with the approach. Despite this, two novel peptides were identified that showed an equivalent in vitro anti‐aggregant activity to that of epigallocatechin‐3‐gallate. Thus, although biosynthetic in vivo strategies show promise as screens for novel activities, unforeseen problems can arise because of the variability inherent in any biological system. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
Several optical imaging techniques have been used to monitor bacterial tropisms for cancer. Most such techniques require genetic engineering of the bacteria to express optical reporter genes. This study investigated a novel tumor‐targeting strain of bacteria, Rhodobacter sphaeroides 2.4.1 (R. sphaeroides), which naturally emits near‐infrared fluorescence, thereby facilitating the visualization of bacterial tropisms for cancer. To determine the penetration depth of bacterial fluorescence, various numbers of cells (from 108 to 1010 CFU) of R. sphaeroides and two types of Escherichia coli, which stably express green fluorescent protein (GFP) or red fluorescent protein (RFP), were injected s.c. or i.m. into mice. Bacterial tropism for cancer was determined after i.v. injection of R. sphaeroides (108 CFU) into mice implanted s.c. with eight types of tumors. The intensity of the fluorescence signal in deep tissue (muscle) from R. sphaeroides was much stronger than from E. coli‐expressing GFP or RFP. The near‐infrared fluorescence signal from R. sphaeroides was visualized clearly in all types of human or murine tumors via accumulation of bacteria. Analyses of C‐reactive protein and procalcitonin concentrations and body weights indicated that i.v. injection of R. sphaeroides does not induce serious systemic immune reactions. This study suggests that R. sphaeroides could be used as a tumor‐targeting microorganism for the selective delivery of drugs to tumor tissues without eliciting a systemic immune reaction and for visualizing tumors.  相似文献   

19.
Treatment ofHER2/neu-overexpressing target cells with interferon (IFN) (200–2000 U/ml for 3 days) markedly enhances their sensitivity to lymphokine-activated killer (LAK) cell lysis. Increased sensitivity is associated with an up-regulation of intercellular adhesion molecule ICAM-1 determinants and a down-regulation ofHER2/neu expression. In the present study, we show that exposure to another cytokine, tumor necrosis factor (200 U/ml for 3 days), also decreasedHER2/neu expression but had no effect on LAK cell lysis and ICAM-1 expression. This suggests that down-regulation of oncogene expression is not sufficient by itself to induce an enhanced sensitivity to LAK cell lysis. IFN-induced enhanced lysis was associated with an increased binding between effectors and targets, and antibodies to ICAM-1 as well as its counter-receptor LFA-1, blocked the increased binding and lysis. Treatment with IFN still significantly enhanced lysis even when concanavalin A was added to the assay to induce maximal binding, indicating that a post-binding effect also participated in enhanced cytotoxicity. These post-binding alterations, were also sensitive to blocking with anti-ICAM-1 and anti-LFA-1 antibodies. Treatment with IFN also sensitized targets to lysis by T cells in the presence of lectin but had no effect on the relative resistance of HER2+ cells to lysis mediated by perforin or TNF. Together these data demonstrate the importance of ICAM-1 determinants in binding and post-binding events in the IFN-induced increased lysis ofHER2/neu + targets.Supported by research funds of the Veteran's Administration, the California Institute for Cancer Research and Jonsson Cancer Center core grant CA 16042 funded by NIH  相似文献   

20.
Fluorescent reference strains of bacteria carrying a stable chromosomally integrated single copy of the gfp gene have been developed. A modified version of the gfp gene has been generated by mutagenesis and expressed under the control of the bacteriophage lambda promoter PL. A cassette comprising bacteriophage Mu transposon arms flanking the modified gfp gene and regulatory regions was irreversibly integrated as an in-vitro-assembled transposition complex into the genomes of Escherichia coli and Salmonella spp. The modified green fluorescent protein (GFP) protein retained the fluorescence excitation and emission wavelengths of wild-type GFP. However, it fluoresced more brightly in E. coli and Salmonella compared to wild-type GFP, presumably due to improved protein maturation. Fluorescent E. coli and Salmonella strains carrying the gfp gene cassette were easily differentiated from their respective non-fluorescent parental strains on various growth media by visualization under UV light. The bacterial strains produced by this method remained viable and stably fluorescent when incorporated into a matrix for delivery of exact numbers of viable bacterial cells for use as quality control agents in microbiological procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号