首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The substrate specificity of two isozymes of collagenolytic protease of the crab (Paralithodes camtschatica) was studied. It was found that both proteases can effectively hydrolyze type I and III collagens, as well as gelatin, the set of products yielded by enzymatic hydrolysis being different for isozymes A and C. Hydrolysis of some well-known peptides revealed that isozyme A predominantly cleaves the peptide bonds containing arginine and lysine residues, whereas isozyme C predominantly hydrolyzes bonds containing hydrophobic amino acids. The catalytic constants for the hydrolysis of several low molecular weight substrates in the presence of P. camtschatica proteases were determined, which allowed to attribute isozyme A to trypsin-like, and isozyme C to chymotrypsin-like proteinases. The peptide substrates of collagenase, Pz-Pro-Leu-Gly-Pro-D-Arg and Z-Gly-Pro-Ala-Gly-Pro-Ala are not hydrolyzed isozymes of crab collagenolytic protease.  相似文献   

2.
The kinetics of exposure of endocytosed material to two lysosomal enzymes were determined for a number of cultured cell lines using fluorogenic substrates. Hydrolysis of endocytosed substrates for cathepsin B and acid phosphatase was observed to begin within 3-10 min of substrate addition and to proceed linearly for up to 60 min thereafter. Hydrolysis of the cathepsin B substrate was not affected by inhibition of protein synthesis with cycloheximide, indicating that the enzymes present in early endosomes are not exclusively newly synthesized. As had been observed previously for a cathepsin B substrate (Roederer, M., Bowser, R., and Murphy, R. F., J. Cell. Physiol., 131:200-209, 1987), hydrolysis of the acid phosphatase substrate was not blocked at temperatures below 20 degrees C. The results suggest that the endosome is the primary site of initial exposure of endocytosed material to hydrolytic enzymes.  相似文献   

3.
A number of model isopeptides containing oligo(methionine) chains varying in length (2-5 residues) covalently linked to the epsilon-amino group of lysine were synthesized by solid-phase procedures. Hydrolysis of these peptides by pepsin, chymotrypsin, cathepsin C (dipeptidyl peptidase IV) and intestinal aminopeptidase N was investigated using high-performance liquid chromatography to identify and quantify the hydrolysis products. Methionine oligomers grafted onto lysine were cleaved to tripeptides by pepsin. Chymotrypsin preferentially hydrolyzed the methionyl-methionine bond preceding the isopeptide bond. Cathepsin C released dimethionyl units from the covalently attached polymers. Intestinal aminopeptidase caused efficient hydrolysis of both peptides and isopeptide bonds although free methionine decreased the cleavage of the latter bond. Hydrophobic characteristics of oligo(methionine) chains promoted enzyme-catalyzed transpeptidations resulting probably from acyl-transfer-type reactions. Complementary hydrolysis of the isopeptides by these digestive enzymes suggests that covalent attachment of oligo(amino acid)s to food proteins may improve their nutritional value.  相似文献   

4.
A kinetic model that represents the reaction of hydrolysis of water-soluble cellulose derivatives by a mixed endo- and exoenzyme system is proposed with the following assumptions: at an early stage of the reaction, endoenzymes split the substrate molecule in order to supply the newly formed nonreducing ends to exoenzymes until the molecular weight of the substrates reaches a low value; after that point, the reaction kinetics obeys only the rate equation of the reaction of the exoenzymes in which the reaction parameters change linearly with decrease of the molecular weight of the substrates. Hydrolysis experiments of soluble cellulose derivatives, carboxymethyl cellulose and hydroxyethyl cellulose, were carried out with endo-and exoenzymes separated from Trichoderma Koningii cellulase. The critical molecular weight of the substrate, from that point the action of endoenzyme can be neglected, was determined from the experimental data. That was ca. 4000 D. With that value, the model fits well the experimental data. Synergism of both enzymes appears as enhancement of the rate of the reaction at the early stage of the reaction.  相似文献   

5.
Extracts of Tyrophagus putrescentiae feces exhibited higher (>50-fold) specific protease activity rates than those measured using mite body extracts for the substrates azocasein, BApNa, SA(2)PPpNa, HA, and HPA. This suggests that trypsin, chymotrypsin, and carboxypeptidases A and B are involved in mite digestion. Hydrolysis of the substrates ZAA(2)MNA and LpNa was only 3 times higher in fecal extracts, suggesting that levels of cathepsin B and aminopeptidases in the lumen of the digestive tract are low compared to the other enzymes. The hydrolysis of hemoglobin was only detected in body extracts indicating that cathepsin D is not a digestive protease in this species. Protease inhibitors of different specificity were tested invivo to establish their potential as control agents. We found that development from larvae to adult was significantly retarded in larvae fed on brewers' yeast containing inhibitors of serine proteases, whereas no such effect was found with inhibitors of cysteine and aspartyl proteases. Interestingly, when dietary mixtures of serine protease, aminopeptidase and carboxypeptidase inhibitors were fed to T.putrescentiae, a synergistic effect was observed that retarded development. Several plant lectins were also tested, but none affected development.  相似文献   

6.
The proteins of submitochondrial particles solubilized with 0.1% Triton X-100 were separated by polyacrylamide gel electrophoresis. Hydrolysis of several proteinase substrates was registered directly in the gel after completion of electrophoresis. According to the data obtained the inner mitochondrial membrane contains one or two enzymes which catalyze hydrolysis of cytochrome c as well as one or two enzymes splitting synthetic substrate of trypsin-like proteinases, e. g. N-alpha-benzoyl-L-arginine-p-nitroanilide (BAPA) and N-alpha-benzoyl-L-arginine-beta-naphthylamide (BANA). Submitochondrial particles were shown to catalyze hydrolysis of 3H-labelled cytochrome c. This activity is suppressed by the same inhibitors as the hydrolysis of mitochondrial translation products, i. e. phenyl-methylsulfonylfluoride, p-chloromercuribenzosulfonate, leupeptin and antipain. Presumably these two processes are catalyzed by the same enzyme localized in the inner mitochondrial membrane. Physiological functions of BAPA- and BANA-hydrolyzing enzyme(s) are still unclear.  相似文献   

7.
Hydrolysis of three different proteins by either crude fish digestive extracts or purified mammal proteases was assayed using two different in vitro systems. The closed system was a modification of the pH-stat method including a previous acid digestion. The open system used a digestion cell containing a semi-permeable membrane which allowed continuous separation of the final products of hydrolysis with a molecular cut-off of 1000 Da. Assays in both systems resulted a similar arrangement of the tested proteins in relation to their ability to be hydrolyzed, with casein>fish meal> or =soybean meal. With the exception of casein, no significant differences were found between results produced by any of the enzyme sources using the closed system. In constrast, significantly higher hydrolysis of all proteins was produced by mammal enzymes under conditions operating in the open system. Differences in the rate of release of amino acids measured in this latter system were related both to the type of protein and the origin of the enzymes. When using purified mammal enzymes, release of lysine or phenylalanine from casein and soybean was high, but low from fishmeal. Isoleucine and valine present in fishmeal were preferentially hydrolyzed by commercial enzymes, but glycine and proline by fish enzymes.  相似文献   

8.
《Carbohydrate research》1986,154(1):127-144
The synthesis of all four deoxyfluoro-α-d-glucopyranosyl phosphates is described. Rate constants for their acid-catalyzed hydrolysis were determined, and fluorine substitution was shown to have a significant effect in lowering the rate, particularly when the substitution is adjacent to the anomeric center. Relative rate-constants measured in m HClO4 at 25° are 60.30:1.00:7.05:3.97:16.5 for α-d-glucopyranosyl phosphate and the 2-, 3-, 4- and 6-deoxyfluoro derivatives, respectively. The hydrolysis of 2-deoxy-2-fluoro-α-d-glucopyranosyl phosphate was studied in more detail, and an activation entropy and enthalpy of 4.1 e.u. (m reactant) and 113.5 kJ.mol−1, respectively, were determined for hydrolysis in m HClO4 at 60° The pH dependence of its hydrolysis was investigated, and rate constants for hydrolysis of the monoanion (kM = 1.88 × 10−6 s−1) and neutral (kN = 6.23 × 10−5 s−1) species were thus extracted. Hydrolysis of the monoanion is not significantly affected by fluorine substitution, as expected. The ability or inability of several mechanistically distinct enzymes to utilize these fluorinated substrates is rationalized in the light of these findings.  相似文献   

9.
Deoxyuridine 5′-triphosphate nucleotidohydrolase (dUTPase, EC 3.6.1.23) catalyzes the hydrolysis of dUTP to dUMP and pyrophosphate, and plays important roles in nucleotide metabolism and DNA replication. Hydrolysis of other nucleotides similar in structure to dUTP would be physiologically negative and therefore high substrate specificity is essential. Binding and hydrolysis of nucleotides different to dUTP by the dUTPases from Plasmodium falciparum (PfdUTPase) and human (hdUTPase) was evaluated by applying isothermal titration calorimetry (ITC). The ribo and deoxyribonucleoside triphosphates dGTP, dATP, dCTP, dTTP, UTP, FdUTP and IdUTP have been analysed. dUTP and FdUTP were the most specific substrates for both enzymes. The specificity constants (kcat/Km) for the remaining ones, except for the IdUTP, were very similar for both enzymes, although PfdUTPase showed a slightly higher specificity for dCTP and UTP and the human enzyme for dTTP and dCTP. PfdUTPase was very efficient in using FdUTP as substrate indicating that small size substituents in the 5′ position are well tolerated. In addition product inhibition was assessed by binding studies with the nucleoside monophosphate derivatives and thermodynamic parameters were established. When FdUTP hydrolysis was monitored, Plasmodium dUTPase was more sensitive to end-product inhibition by FdUMP than the human enzyme. Taken together these results highlight further significant differences between the human and Plasmodium enzymes that may be exploitable in selective inhibitor design.  相似文献   

10.
Hydrolysis of cyclic AMP and cyclic GMP analogues by a purified cGMP-stimulated phosphodiesterase from bovine adrenal tissue was investigated by reversed-phase HPLC. The results indicate that both a negative charge and an equatorial oxygen atom located at the cyclic phosphate residue are absolute requirements for the process of hydrolysis. Other substituents only gradually decreased the apparent hydrolytic activity. C-8-substituted derivatives were generally poor substrates due to the limited ability of these compounds to rotate freely around the glycosidic bond. While C-6- and 0-2'-substituted analogues carrying bulky substituents were also poorly hydrolysed, all other derivatives, including different C-2-, C-6-, 0-3'- and 0-5'-modified cyclic nucleotides, were good substrates. We consistently observed that cyclic GMP and cyclic GMP analogues were better hydrolysed than the corresponding cyclic AMP analogues. Hydrolysis was correlated with neither the hydrogen bond donor/acceptor abilities nor the hydrophobicity of selected cyclic nucleotide analogues. Based on quantum-chemical calculations of the size and direction of the dipole moments of different purine bases, we propose that the polarization of inducible amino acid side-chains within the binding site is involved in the differential binding of adenine-derived and guanine-derived nucleotides. However, the size of the dipole moment alone is not sufficient to explain the observed cGMP-preference. Rather, the direction of the polarization power relative to the other molecular structures involved in binding and hydrolysis seems to be the molecular mechanism by which the enzyme is able to discriminate between cAMP- and cGMP-like structures.  相似文献   

11.
1. The peptidase activities of pig pepsins A and C and human pepsin and gastricsin were compared. 2. The peptides studied had the general formula A Leu Val-His-B. Hydrolysis at 37 degrees C and pH 2.07 occurred at the amino side of the leucine residue for all the enzymes and all the peptides. 3. When A was Ac-Ala the peptides were hydrolysed under these conditions slowly by pig pepsin C only. 4. Pig pepsin A and human pepsin were unable to hydrolyse the tyrosine-containing peptides under the conditions tested. Gastricsin (human pepsin C) had about one-third of the activity of pig pepsin C with these substrates. 5. The increase in the rate of hydrolysis caused by the extension of the chain by a single alanine residue was most marked for pig pepsin A and human pepsin.  相似文献   

12.
Hydrolysis of probe substrates, eight possible monodeoxy and mono-O-methyl analogs of p-nitrophenyl alpha-D-glucopyranoside (pNP alpha-D-Glc), modified at the C-2, C-3, C-4, and C-6 positions, was studied as part of investigations into the glycon specificities of seven alpha-glucosidases (EC 3.2.1.20) isolated from Saccharomyces cerevisiae, Bacillus stearothermophilus, honeybee (two enzymes), sugar beet, flint corn, and Aspergillus niger. The glucosidases from sugar beet, flint corn, and A. niger were found to hydrolyze the 2-deoxy analogs with substantially higher activities than against pNP alpha-D-Glc. Moreover, the flint corn and A. niger enzymes showed hydrolyzing activities, although low, for the 3-deoxy analog. The other four alpha-glucosidases did not exhibit any activities for either the 2- or the 3-deoxy analogs. None of the seven enzymes exhibited any activities toward the 4-deoxy, 6-deoxy, or any of the methoxy analogs. The hydrolysis results, with the deoxy substrate analogs, demonstrated that alpha-glucosidases having remarkably different glycon specificities exist in nature. Further insight into the hydrolysis of deoxyglycosides was obtained by determining the kinetic parameters (k(cat) and K(m)) for the reactions of sugar beet, flint corn, and A. niger enzymes.  相似文献   

13.
Two soluble alpha-mannosidases, E-I and E-II, were purified from C. albicans yeast cells by a three-step procedure consisting of size exclusion and ion exchange chromatographies in Sepharose CL6B and Mono Q columns, respectively, and preparative nondenaturing electrophoresis. E-I and E-II migrated as monomeric polypeptides of 54.3 and 93.3 kDa in SDS-PAGE, respectively. Some biochemical properties of purified enzymes were investigated by using 4-methylumbelliferyl-alpha-D-mannopyranoside and p-nitrophenyl-alpha-D-mannopyranoside as substrates. Hydrolysis of both substrates by either enzyme was optimum at pH 6.0 with 50 mM Mes-Tris buffer and at 42 degrees C. Apparent Kmvalues for hydrolysis of 4-methylumbelliferyl-alpha-D-mannopyranoside and p-nitrophenyl-alpha-D-mannopyranoside by E-I were 0.83 microM and 2. 4 mM, respectively. Corresponding values for E-II were 0.25 microM and 1.86 mM. Swansonine and deoxymannojirimicin strongly inhibited the hydrolysis of 4-methylumbelliferyl-alpha-D-mannopyranoside by both enzymes. On the contrary, hydrolysis of p-nitrophenyl-alpha-D-mannopyranoside by E-I and E-II was slightly stimulated or not affected, respectively, by both inhibitors. E-I and E-II did not depend on metal ions although activity of the latter was slightly stimulated by Mn2+and Ca2+in the range of 0.5-2 mM. At the same concentrations, Mg2+was slightly inhibitory of both enzymes. Substrate specificity experiments revealed that both E-I and E-II preferentially cleaved alpha-1,6 and alpha-1,3 linkages, respectively.  相似文献   

14.
Presteady state and steady state analyses of the alpha-chymotrypsin [EC 3.4.21.1]-catalyzed hydrolysis of three specific ester substrates and three ring-substituted derivatives were carried out to elucidate the effect of hydrophobic interactions due to the different side chains of the substrates on the individual steps of the reaction. Hydrolysis of all the substrates except for N alpha-acetyl-Nin-formyltryptophan methyl ester (Ac-Trp(CHO)-OMe) was controlled by the deacylation rate. In spite of their comparable Ks values, the substrates with small kcat, such as N alpha-acetyltryptophan methyl ester and N alpha-acetyl-2-(2-nitro-4-carboxyphenylsufenyl)-tryptophan methyl ester, characteristically gave Km values one order of magnitude smaller than the others. For the reaction of Ac-Trp(CHO)-OMe, it was ascertained that the deacylation step was not rate-controlling. It is suggested that the acylation step controls the rate in this case.  相似文献   

15.
The impact of xylan and glucomannan hydrolysis on cellulose hydrolysis was studied on five pretreated softwood substrates with different xylan and glucomannan contents, both varying from 0.2% to 6.9%, using mixtures of purified enzymes.The supplementation of pure cellulase mixture with non-specific endoglucanase TrCel7B and xylanase TrXyn11 enhanced the hydrolysis of all substrates, except the steam pretreated spruce, by more than 50%. The addition of endo-β-mannanase increased the overall hydrolysis yield by 20-25%, liberating significantly more glucose than theoretically present in glucomannan.When supplemented together, xylanolytic and mannanolytic enzymes acted synergistically with cellulases. Moreover, a linear correlation was observed between the hydrolysis of polysaccharides, irrespective of the composition, indicating that glucomannan and xylan form a complex network of polysaccharides around the cellulosic fibres extending throughout the lignocellulosic matrix. Both hemicellulolytic enzymes are crucial as accessory enzymes when designing efficient mixtures for the total hydrolysis of lignocellulosic substrates containing both hemicelluloses.  相似文献   

16.
The group of aminopeptidase bands from Tineola bisselliella larvae with highest electrophoretic mobility in polyacrylamide gels were purified further and partially separated by ion exchange chromatography. Three aminopeptidase bands were present in this material and were very similar with respect to their pH optima (7-7), their molecular weight of 94,000, their responses to metal ions and enzyme inhibitors and in their substrate specificity requirements. Kinetic constants were obtained for the hydrolysis of 17 different alpha-aminoacyl-beta-naphthylamides by these aminopeptidases, the most favoured substrates being the derivatives of alanine, methionine, proline, leucine, glycine, glutamic acid, lysine and arginine. The enzymes also hydrolyse amino acid amides, dipeptides, dipeptide amides, tripeptides and oligopeptides at the N-terminal end. These enzymes differ from the other aminopeptides in T. bisselliella in being able to hydrolyse bonds involving proline.  相似文献   

17.
Multicatalytic, High-Mr Endopeptidase from Postmortem Human Brain   总被引:2,自引:0,他引:2  
The main high molecular weight (650K) multicatalytic endopeptidase has been purified from postmortem human cerebral cortex. As in other tissues and species, this enzyme is composed of several subunits of 24-31K and has three distinct catalytic activities, as shown by the hydrolysis of the fluorogenic tripeptide substrates glutaryl-Gly-Gly-Phe-7-amido-4-methylcoumarin, benzyloxycarboxyl-Gly-Gly-Arg-7-amido-4-methylcoumarin, and benzyloxycarboxyl-Leu-Leu-Glu-2-naphthylamide with hydrophobic (Phe), basic (Arg), and acidic (Glu) residues in the P1 position, respectively. These activities are distinguishable by their differential sensitivity to peptidase inhibitors. The enzyme hydrolysed neuropeptides at pH 7.4 at multiple sites with widely differing rates, ranging from 113 nmol/min/mg for substance-P, down to 2 nmol/min/mg for bradykinin. The enzyme also had proteinase activity as shown by the hydrolysis of casein. For the hydrolysis of the Tyr5-Gly6 bond in luteinizing hormone-releasing hormone, the Km was 0.95 mM and the specificity constant (kcat/Km) was 4.7 X 10(3) M-1 s-1. The bond specificity of the enzyme at neutral pH was determined by identifying the degradation products of 15 naturally occurring peptide sequences. The bonds most susceptible to hydrolysis had a hydrophobic residue at P1 and either a small (e.g., -Gly or -NH2) or hydrophobic residue at P'1. Hydrolysis of -Glu-X bonds (most notably in neuropeptide Y) and the Arg6-Arg7 bond in dynorphin peptides was also seen. Thus the three activities identified with fluorogenic substrates appear to be expressed against oligopeptides.  相似文献   

18.
A keratinolytic protease from the fungus Doratomyces microsporus was investigated for its ability to hydrolyse different native proteins. The purified enzyme was incubated for up to 24 h with keratinous substrates as well as with non-keratinous proteins. The results showed that the enzyme was broad specific since it hydrolysed various globular and fibrillar proteins. The hydrolysis of keratinous substrates decreased in the following order: skin keratins > nail keratins > hair keratins. With non-keratinous substrates, the order was: casein > BSA > elastin. Feather keratin and collagen could not be hydrolysed. Comparison of the enzyme with some known proteolytic enzymes showed that on keratin from stratum corneum the activity of the keratinase was comparable to that of proteinase K, other enzymes were less active. Hydrolysis of porcine skin with the keratinase revealed the degradation of the epidermis while dermis was not damaged.  相似文献   

19.
The presence of lignin is known to reduce the efficiency of the enzymatic hydrolysis of lignocellulosic raw materials. On the other hand, solubilization of hemicellulose, especially of xylan, is known to enhance the hydrolysis of cellulose. The enzymatic hydrolysis of spruce, recognized among the most challenging lignocellulosic substrates, was studied by commercial and purified enzymes from Trichoderma reesei. Previously, the enzymatic hydrolysis of steam pretreated spruce has been studied mainly by using commercial enzymes and no efforts have been taken to clarify the bottlenecks by using purified enzyme components.Steam-pretreated spruce was hydrolyzed with a mixture of Celluclast and Novozym 188 to obtain a hydrolysis residue, expectedly containing the most resistant components. The pretreated raw material and the hydrolysis residue were analyzed for the enrichment of structural bottlenecks during the hydrolysis. Lignin was removed from these two materials with chlorite delignification method in order to eliminate the limitations caused by lignin. Avicel was used for comparison as a known model substrate. Mixtures of purified enzymes were used to investigate the hydrolysis of the individual carbohydrates: cellulose, glucomannan and xylan in the substrates. The results reveal that factors limiting the hydrolysis are mainly due to the lignin, and to a minor extent by the lack of accessory enzymes. Removal of lignin doubled the hydrolysis degree of the raw material and the residue, and reached close to 100% of the theoretical within 2 days. The presence of xylan seems to limit the hydrolysability, especially of the delignified substrates. The hydrolysis results also revealed significant hemicellulose impurities in the commonly used cellulose model substrate, making it questionable to use Avicel as a model cellulose substrate for hydrolysis experiments.  相似文献   

20.
Degradation products from the addition of extracellular enzymes from Thermomonospora fusca BD25 to ball-milled wheat straw, oat spelt xylan and solubilised kraft pulps were characterised by HPLC and TLC. Overall, a high percentage hydrolysis of oat spelt xylan (28.9%) occurred after 26 h incubation. However, the rates of hydrolysis of ball-milled wheat straw and kraft pulp were approximately 4-6-fold less than xylan hydrolysis, although the total percentage hydrolysis of available substrate was similar (22.2% and 25.9% respectively). Incubation of kraft pulp and ball-milled wheat straw by crude extracellular enzymes of T. fusca BD25 resulted in the detection of aromatic compounds at concentrations of 0.6 microg ml(-1) and 8.7 microg ml(-1), respectively. Hydrolysis of oat spelt xylan by T. fusca BD25 extracellular enzymes yielded a mixture of xylose, xylotriose and putative substituted-xylotriose, while the products of ball-milled wheat straw hydrolysis were xylose, glucose and a small oligomer present in the digest. The results highlight the ability of culture supernatant from T. fusca to release both simple sugars and aromatic compounds from lignocellulosic substrates and suggest a role for this organism in the biobleaching of pulp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号