首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《植物生态学报》2018,42(11):1120
外来植物入侵对土壤氮循环和氮有效性的影响是入侵成功或进一步加剧的重要原因。通过对比相同研究地点入侵区域和无入侵区域的土壤原位氮状态差异, 探讨了外来植物入侵对土壤氮有效性的影响程度和生理生态学机制。基于107篇相关研究文献数据的整合, 发现植物入侵区域相对于无入侵区域土壤总氮、铵态氮、硝态氮、无机氮、微生物生物量氮含量显著增加, 增幅分别为(50 ± 14)%、(60 ± 24)%、(470 ± 115)%、(69 ± 25)%、(54 ± 20)%。土壤硝态氮含量增幅较大反映硝化作用增强, 这可能增加入侵植物硝态氮利用以及喜硝植物的共存。温带地区植物入侵后土壤的硝态氮含量增幅显著高于亚热带地区。固氮植物入侵后土壤的总氮和无机氮含量增幅均显著高于非固氮植物入侵。木本和常绿植物入侵后土壤的总氮含量增幅分别高于草本和落叶植物入侵; 而土壤铵态氮含量的增幅没有显著差异且与固氮入侵植物占比无明显关系; 然而硝态氮含量的增幅普遍较高且与固氮入侵植物占比显著正相关。外来入侵植物固氮功能以及凋落物质量和数量是影响土壤氮矿化和硝化过程的关键因素。该研究为理解外来植物入侵成功和加剧的机制以及入侵植物功能性状与土壤氮动态之间的关系提供了新的见解。  相似文献   

2.
外来植物入侵对土壤氮循环和氮有效性的影响是入侵成功或进一步加剧的重要原因。通过对比相同研究地点入侵区域和无入侵区域的土壤原位氮状态差异, 探讨了外来植物入侵对土壤氮有效性的影响程度和生理生态学机制。基于107篇相关研究文献数据的整合, 发现植物入侵区域相对于无入侵区域土壤总氮、铵态氮、硝态氮、无机氮、微生物生物量氮含量显著增加, 增幅分别为(50 ± 14)%、(60 ± 24)%、(470 ± 115)%、(69 ± 25)%、(54 ± 20)%。土壤硝态氮含量增幅较大反映硝化作用增强, 这可能增加入侵植物硝态氮利用以及喜硝植物的共存。温带地区植物入侵后土壤的硝态氮含量增幅显著高于亚热带地区。固氮植物入侵后土壤的总氮和无机氮含量增幅均显著高于非固氮植物入侵。木本和常绿植物入侵后土壤的总氮含量增幅分别高于草本和落叶植物入侵; 而土壤铵态氮含量的增幅没有显著差异且与固氮入侵植物占比无明显关系; 然而硝态氮含量的增幅普遍较高且与固氮入侵植物占比显著正相关。外来入侵植物固氮功能以及凋落物质量和数量是影响土壤氮矿化和硝化过程的关键因素。该研究为理解外来植物入侵成功和加剧的机制以及入侵植物功能性状与土壤氮动态之间的关系提供了新的见解。  相似文献   

3.
李钧敏  董鸣 《生态学报》2011,31(4):1174-1184
寄生植物是生态系统中的特殊类群之一。植物寄生可以驱动生态系统中生物与非生物因子的变化,在生态系统结构与功能中起关键作用。寄生植物可以通过对寄主营养的集聚、改变凋落物的质量与数量、改变根的周转与分泌物格局、改变土壤水势,从而影响土壤理化特性。寄生植物会改变寄主的行为,改变寄主与非寄主植物之间的相互作用,从而影响植物群落的结构、多样性和动态,进而影响植被演替和植被生产力等。寄生植物与寄主均可被消费者取食,可直接或间接地影响生态系统的食草动物,包括草食昆虫等。寄生植物与寄主的其它寄生物存在竞争关系,可以直接或间接地影响寄主的其它寄生植物或病原真菌。寄生植物可以明显地改变土壤地球化学循环,将固有的不可动的成分转变为可利用的营养成分,改变土壤生物群落的结构与功能,从而显著影响地下生物群落。这些表明,植物寄生对生态系统的结构和功能有重要影响。针对特殊的被入侵的植物群落,该地寄生植物可以通过影响入侵植物寄主的生长、繁殖、生物量分配格局,改变土壤的理化特性,促进非寄主的非优势本地植物的生长,从而改变被入侵植物群落结构与多样性,达到生物防治及生态恢复的目的。  相似文献   

4.
Effects of Exotic Plant Invasions on Soil Nutrient Cycling Processes   总被引:41,自引:3,他引:38  
Although it is generally acknowledged that invasions by exotic plant species represent a major threat to biodiversity and ecosystem stability, little attention has been paid to the potential impacts of these invasions on nutrient cycling processes in the soil. The literature on plant–soil interactions strongly suggests that the introduction of a new plant species, such as an invasive exotic, has the potential to change many components of the carbon (C), nitrogen (N), water, and other cycles of an ecosystem. I have reviewed studies that compare pool sizes and flux rates of the major nutrient cycles in invaded and noninvaded systems for invasions of 56 species. The available data suggest that invasive plant species frequently increase biomass and net primary production, increase N availability, alter N fixation rates, and produce litter with higher decomposition rates than co-occurring natives. However, the opposite patterns also occur, and patterns of difference between exotics and native species show no trends in some other components of nutrient cycles (for example, the size of soil pools of C and N). In some cases, a given species has different effects at different sites, suggesting that the composition of the invaded community and/or environmental factors such as soil type may determine the direction and magnitude of ecosystem-level impacts. Exotic plants alter soil nutrient dynamics by differing from native species in biomass and productivity, tissue chemistry, plant morphology, and phenology. Future research is needed to (a) experimentally test the patterns suggested by this data set; (b) examine fluxes and pools for which few data are available, including whole-site budgets; and (c) determine the magnitude of the difference in plant characteristics and in plant dominance within a community that is needed to alter ecosystem processes. Such research should be an integral component of the evaluation of the impacts of invasive species.  相似文献   

5.
Exotic plant invasions alter ecosystem properties and threaten ecosystem functions globally. Interannual climate variability (ICV) influences both plant community composition (PCC) and soil properties, and interactions between ICV and PCC may influence nitrogen (N) and carbon (C) pools. We asked how ICV and non-native annual grass invasion covary to influence soil and plant N and C in a semiarid shrubland undergoing widespread ecosystem transformation due to invasions and altered fire regimes. We sampled four progressive stages of annual grass invasion at 20 sites across a large (25,000 km2) landscape for plant community composition, plant tissue N and C, and soil total N and C in 2013 and 2016, which followed 2 years of dry and wet conditions, respectively. Multivariate analyses and ANOVAs showed that in invasion stages where native shrub and perennial grass and forb communities were replaced by annual grass-dominated communities, the ecosystem lost more soil N and C in wet years. Path analysis showed that high water availability led to higher herbaceous cover in all invasion stages. In stages with native shrubs and perennial grasses, higher perennial grass cover was associated with increased soil C and N, while in annual-dominated stages, higher annual grass cover was associated with losses of soil C and N. Also, soil total C and C:N ratios were more homogeneous in annual-dominated invasion stages as indicated by within-site standard deviations. Loss of native shrubs and perennial grasses and forbs coupled with annual grass invasion may lead to long-term declines in soil N and C and hamper restoration efforts. Restoration strategies that use innovative techniques and novel species to address increasing temperatures and ICV and emphasize maintaining plant community structure—shrubs, grasses, and forbs—will allow sagebrush ecosystems to maintain C sequestration, soil fertility, and soil heterogeneity.  相似文献   

6.
Aim Invasion of nitrogen‐fixing non‐native plant species may alter soil resources and impact native plant communities. Altered soils may be the driving mechanism that provides a suitable environment to facilitate future invasions and decrease native biodiversity. We hypothesized that Melilotus invasion would increase nitrogen availability and produce soil microclimate and biochemical changes, which could in turn alter plant species composition in a montane grassland community. Location Our research addressed the effects of white and yellow sweet clover (Melilotus officinalis and M. alba) invasion on soil characteristics and nitrogen processes in the montane grasslands in Rocky Mountain National Park. Methods We sampled soil in replicate sites of Melilotus‐invaded and control (non‐invaded) patches within disturbed areas in montane grassland habitats. Soil composites were analysed for available nitrogen, net nitrogen mineralization, moisture, carbon/nitrogen (C : N ratio), texture, organic matter and pH. Data were recorded at three sample dates during the growing seasons of 1998 and 1999. Results Contrary to our expectations, we observed lower nitrogen availability and mineralization in invaded patches, and differences in soil moisture content and soil C : N. Soil C : N ratios were higher in invaded plots, in spite of the fact that Melilotus had the lowest C : N ratios of other plant tissue analysed in this study. Main conclusions These findings provide land managers of natural areas with a better perspective on the possibilities of nitrogen‐fixing species impact on soil nutrient levels.  相似文献   

7.
Unprecedented levels of nitrogen (N) have entered terrestrial ecosystems over the past century, which substantially influences the carbon (C) exchange between the atmosphere and biosphere. Temperature and moisture are generally regarded as the major controllers over the N effects on ecosystem C uptake and release. N‐phosphorous (P) stoichiometry regulates the growth and metabolisms of plants and soil organisms, thereby affecting many ecosystem C processes. However, it remains unclear how the N‐induced shift in the plant N:P ratio affects ecosystem production and C fluxes and its relative importance. We conducted a field manipulative experiment with eight N addition levels in a Tibetan alpine steppe and assessed the influences of N on aboveground net primary production (ANPP), gross ecosystem productivity (GEP), ecosystem respiration (ER), and net ecosystem exchange (NEE); we used linear mixed‐effects models to further determine the relative contributions of various factors to the N‐induced changes in these parameters. Our results showed that the ANPP, GEP, ER, and NEE all exhibited nonlinear responses to increasing N additions. Further analysis demonstrated that the plant N:P ratio played a dominate role in shaping these C exchange processes. There was a positive relationship between the N‐induced changes in ANPP (ΔANPP) and the plant N:P ratio (ΔN:P), whereas the ΔGEP, ΔER, and ΔNEE exhibited quadratic correlations with the ΔN:P. In contrast, soil temperature and moisture were only secondary predictors for the changes in ecosystem production and C fluxes along the N addition gradient. These findings highlight the importance of plant N:P ratio in regulating ecosystem C exchange, which is crucial for improving our understanding of C cycles under the scenarios of global N enrichment.  相似文献   

8.
Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant–soil nutrient concentrations. We conducted a meta‐analysis of 215 peer‐reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient‐poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant–soil elemental composition and stoichiometry.  相似文献   

9.
Many invasive plant species show high rates of nutrient acquisition relative to their competitors. Yet the mechanisms underlying this phenomenon, and its implications for ecosystem functioning, are poorly understood, particularly in nutrient-limited systems. Here, we test the hypothesis that an invasive plant species (Microstegium vimineum) enhances its rate of nitrogen (N) acquisition by outcompeting soil organic matter-degrading microbes for N, which in turn accelerates soil N and carbon (C) cycling. We estimated plant cover as an indicator of plant N acquisition rate and quantified plant tissue N, soil C and N content and transformations, and extracellular enzyme activities in invaded and uninvaded plots. Under low ambient N availability, invaded plots had 77% higher plant cover and lower tissue C:N ratios, suggesting that invasion increased rates of plant N acquisition. Concurrent with this pattern, we observed significantly higher mass-specific enzyme activities in invaded plots as well as 71% higher long-term N availability, 21% lower short-term N availability, and 16% lower particulate organic matter N. A structural equation model showed that these changes were interrelated and associated with 27% lower particulate organic matter C in invaded areas. Our findings suggest that acquisition of N by this plant species enhances microbial N demand, leading to an increased flux of N from organic to inorganic forms and a loss of soil C. We conclude that high N acquisition rates by invasive plants can drive changes in soil N cycling that are linked to effects on soil C.  相似文献   

10.
Whether plant invasion increases ecosystem carbon (C) stocks is controversial largely due to the lack of knowledge about differences in ecophysiological properties between invasive and native species. We conducted a field experiment in which we measured ecophysiological properties to explore the response of the ecosystem C stocks to the invasion of Spartina alterniflora (Spartina) in wetlands dominated by native Scirpus mariqueter (Scirpus) and Phragmites australis (Phragmites) in the Yangtze Estuary, China. We measured growing season length, leaf area index (LAI), net photosynthetic rate (Pn), root biomass, net primary production (NPP), litter quality and litter decomposition, plant and soil C and nitrogen (N) stocks in ecosystems dominated by the three species. Our results showed that Spartina had a longer growing season, higher LAI, higher Pn, and greater root biomass than Scirpus and Phragmites. Net primary production (NPP) was 2.16 kg C m−2 y−1 in Spartina ecosystems, which was, on average, 1.44 and 0.47 kg C m−2 y−1 greater than that in Scirpus and Phragmites ecosystems, respectively. The litter decomposition rate, particularly the belowground decomposition rate, was lower for Spartina than Scirpus and Phragmites due to the lower litter quality of Spartina. The ecosystem C stock (20.94 kg m−2) for Spartina was greater than that for Scirpus (17.07 kg m−2), Phragmites (19.51 kg m−2) and the mudflats (15.12 kg m−2). Additionally, Spartina ecosystems had a significantly greater N stock (698.8 g m−2) than Scirpus (597.1 g m−2), Phragmites ecosystems (578.2 g m−2) and the mudflats (375.1 g m−2). Our results suggest that Spartina invasion altered ecophysiological processes, resulted in changes in NPP and litter decomposition, and ultimately led to enhanced ecosystem C and N stocks in the invaded ecosystems in comparison to the ecosystems with native species.  相似文献   

11.
了解外来植物入侵对本土植物群落种群动态的影响对于植物入侵的防控极为重要。该文以加拿大一枝黄花(Solidago canadensis)入侵不同阶段的植物群落为研究对象, 对本土植物物种多样性以及常见优势种群的生态位变化进行了定量分析。结果表明: 加拿大一枝黄花氮素积累能力高于其他本土优势种群。随着加拿大一枝黄花入侵的深入, 本土植物群落的物种多样性呈现显著下降趋势; 氮素积累能力高的本土优势种群生态位宽度呈现明显的上升趋势, 而氮素积累能力低的本土优势种群生态位宽度则呈现明显下降的趋势; 本土优势种群的生态位重叠平均值呈现逐步下降的趋势。加拿大一枝黄花的入侵, 显著提高了土壤硝态氮含量, 而土壤铵态氮、有效磷、全磷和全氮含量显著降低。对氮素的积累能力决定了加拿大一枝黄花入侵后, 本土植物种群的动态变化格局。  相似文献   

12.
包括紫茎泽兰在内的许多外来植物都能够与新入侵生境的丛枝菌根真菌( AMF)形成互利共生,因此菌根真菌如何调节外来植物种的入侵是当前亟待研究的问题。测定了紫茎泽兰入侵不同阶段(紫茎泽兰呈零星丛状分布于本地植物群落中[部分入侵生境]及紫茎泽兰单优群落形成期[入侵生境])的土壤化学性状,而后通过野外试验,采用杀真菌剂处理,研究了包括AMF在内的土壤真菌对紫茎泽兰入侵的反馈作用。紫茎泽兰入侵改变了土壤化学性状。施用杀真菌剂降低了紫茎泽兰叶面积、叶片碳、氮、磷、和δ13 C含量。综合分析发现,在紫茎泽兰与本地植物混生群落中,土壤真菌能够增加紫茎泽兰叶片碳和δ13 C含量,但是不能提高紫茎泽兰的光合作用,表明碳和δ13 C含量的提高,不是光合作用的结果,而是通过其他机制实现的。因此可以得出,在部分入侵生境中,碳从土壤或临近植物经由菌丝网向紫茎泽兰转移。紫茎泽兰入侵不同阶段土壤养分的变化利于紫茎泽兰种群建立,同时利于紫茎泽兰借助真菌(尤其是AMF)从土壤或临近植物转移碳,促进种群扩散,这可能是紫茎泽兰入侵的机制之一。  相似文献   

13.
Atmospheric nitrogen deposition may indirectly affect ecosystems through deposition-induced changes in the rates of insect herbivory. Plant nitrogen (N) status can affect the consumption rates and population dynamics of herbivorous insects, but the extent to which N deposition-induced changes in herbivory might lead to changes in ecosystem-level carbon (C) and N dynamics is unknown. We created three insect herbivory functions based on empirical responses of insect consumption and population dynamics to changes in foliar N and implemented them into the CENTURY model. We modeled the responses of C and N storage patterns and flux rates to N deposition and insect herbivory in an herbaceous system. Results from the model indicate that N deposition caused a strong increase in plant production, decreased plant C : N ratios, increased soil organic C (SOC), and enhanced rates of N mineralization. In contrast, herbivory decreased both vegetative and SOC storage and depressed N mineralization rates. The results suggest that herbivory plays a particularly important role in affecting ecosystem processes by regulating the threshold value of N deposition at which ecosystem C storage saturates; C storage saturated at lower rates of N deposition with increasing intensity of herbivory. Differences in the results among the modeled insect herbivory functions suggests that distinct physiological and population response of insect herbivores can have a large impact on ecosystem processes. Including the effects of herbivory in ecosystem studies, particularly in systems where rates of herbivory are high and linked to plant C : N, will be important in generating accurate predictions of the effects of atmospheric N deposition on ecosystem C and N dynamics.  相似文献   

14.
Soil nitrogen (N) is an important component in maintaining ecosystem stability, and the introduction of non-native plants can alter N cycling by changing litter quality and quantity, nutrient uptake patterns, and soil food webs. Our goal was to determine the effects of Bromus tectorum (C3) invasion on soil microbial N cycling in adjacent non-invaded and invaded C3 and C4 native arid grasslands. We monitored resin-extractable N, plant and soil δ13C and δ15N, gross rates of inorganic N mineralization and consumption, and the quantity and isotopic composition of microbial phospholipid biomarkers. In invaded C3 communities, labile soil organic N and gross and net rates of soil N transformations increased, indicating an increase in overall microbial N cycling. In invaded C4 communities labile soil N stayed constant, but gross N flux rates increased. The δ13C of phospholipid biomarkers in invaded C4 communities showed that some portion of the soil bacterial population preferentially decomposed invader C3-derived litter over that from the native C4 species. Invasion in C4 grasslands also significantly decreased the proportion of fungal to bacterial phospholipid biomarkers. Different processes are occurring in response to B. tectorum invasion in each of these two native grasslands that: 1) alter the size of soil N pools, and/or 2) the activity of the microbial community. Both processes provide mechanisms for altering long-term N dynamics in these ecosystems and highlight how multiple mechanisms can lead to similar effects on ecosystem function, which may be important for the construction of future biogeochemical process models.  相似文献   

15.
氮沉降和放牧是影响草地碳循环过程的重要环境因子,但很少有研究探讨这些因子交互作用对生态系统呼吸的影响。在西藏高原高寒草甸地区开展了外源氮素添加与刈割模拟放牧实验,测定了其对植物生物量分配、土壤微生物碳氮和生态系统呼吸的影响。结果表明:氮素添加显著促进生态系统呼吸,而模拟放牧对其无显著影响,且降低了氮素添加的刺激作用。氮素添加通过提高微生物氮含量和土壤微生物代谢活性,促进植物地上生产,从而增加生态系统的碳排放;而模拟放牧降低了微生物碳含量,且降低了氮素添加的作用,促进根系的补偿性生长,降低了氮素添加对生态系统碳排放的刺激作用。这表明,放牧压力的存在会抑制氮沉降对高寒草甸生态系统碳排放的促进作用,同时外源氮输入也会缓解放牧压力对高寒草甸生态系统生产的负面影响。  相似文献   

16.
互花米草入侵下湿地土壤碳氮磷变化及化学计量学特征   总被引:1,自引:0,他引:1  
为阐明外来物种入侵对生态系统的改变,对闽江河口区本土植物短叶茳芏和不同入侵年限的互花米草湿地土壤总碳(TC)、总氮(TN)、总磷(TP)含量进行了测定与分析.结果表明: 互花米草入侵后0~50 cm深度各层土壤TC、TN和TP含量均有不同程度的增加,其中TC、TN的变化比较一致,而TP的变化滞后;TC的增加引起土壤C/N持续增加,而TP是调节互花米草入侵过程中湿地土壤C/P和N/P的关键因子,C/P和N/P的变化基本一致.土壤TC、TN、TP的变化受到土壤盐度、容重、含水量和黏粒组成的影响,而它们之间计量比主要受土壤盐度、粒径组成的影响;C/N和C/P对互花米草湿地的土壤固碳效应具有良好的指示作用.互花米草入侵引起生物量和湿地生境改变,导致土壤碳氮磷含量及其生态化学计量比发生显著变化,且随入侵时间延长表现出不同的变化特征.  相似文献   

17.
Changes in the quantity and quality of plant litter occur in many ecosystems as they are invaded by exotic species, which impact soil nutrient cycling and plant community composition. Such changes in sagebrush-steppe communities are occurring with invasion of annual grasses (AG) into a perennial grass (PG) dominated system. We conducted a 5-year litter manipulation study located in the northern Great Basin, USA. Springtime litter was partially or completely removed in three communities with differing levels of invasion (invaded, mixed, and native) to determine how litter removal and litter biomass affected plant-available soil N and plant community composition. Litter biomass (prior to the removal treatment) was negatively correlated with plant-available N in the invaded community, but was positively correlated in the native community. Plant-available N had greater intra- and inter-annual fluctuations in the invaded compared to the mixed or native communities, but was not generally affected by removal treatments. Litter removal had negative effects on AG cover during a warm/dry year and negative effects on PG cover during a cool/wet year in the mixed community. Overall, the effectiveness of springtime litter manipulations on plant-available N were limited and weather dependent, and only removal treatments >75 % had effects on the plant community. Our study demonstrates how communities invaded by AGs have significantly increased temporal variability in nutrient cycling, which may decrease ecosystem stability. Further, we found that the ecological impacts from litter manipulation on sagebrush communities were dependent on the extent of AG invasion, the timing of removal, and seasonal precipitation.  相似文献   

18.
Plant invasions have dramatic aboveground effects on plant community composition, but their belowground effects remain largely uncharacterized. Soil microorganisms directly interact with plants and mediate many nutrient transformations in soil. We hypothesized that belowground changes to the soil microbial community provide a mechanistic link between exotic plant invasion and changes to ecosystem nutrient cycling. To examine this possible link, monocultures and mixtures of exotic and native species were maintained for 4 years in a California grassland. Gross rates of nitrogen (N) mineralization and nitrification were quantified with 15N pool dilution and soil microbial communities were characterized with DNA‐based methods. Exotic grasses doubled gross nitrification rates, in part by increasing the abundance and changing the composition of ammonia‐oxidizing bacteria in soil. These changes may translate into altered ecosystem N budgets after invasion. Altered soil microbial communities and their resulting effects on ecosystem processes may be an invisible legacy of exotic plant invasions.  相似文献   

19.
冬季升温对高山生态系统碳氮循环过程的影响   总被引:1,自引:0,他引:1  
宗宁  石培礼 《生态学报》2020,40(9):3131-3143
全球温度升高是目前面临的重要环境问题,但存在明显的季节差异性,即冬季升温幅度显著高于夏季的季节非对称性趋势,这在高纬度和高海拔地区更加显著。冬季升温会直接影响积雪覆盖与冰冻层厚度,并引起冻融交替循环的增加,而冬季植物处于休眠状态,这会直接影响土壤中有效氮的吸收与损失,引起土壤有效氮可利用性的变化。然而,关于冬季增温对后续生长季节植物活动、土壤碳氮循环过程的影响等方面的研究仍存在诸多不确定。综述了冬季升温对积雪覆盖与冻融交替循环改变对高山生态系统物质循环的影响,以及冬季升温对土壤碳氮循环、微生物与酶活性的影响,并由此引起的植物物候期、群落结构、生产与养分循环与凋落物分解等生理、生态过程方面的研究进展。在未来的研究中,应针对不同生态系统特点选择合适的冬季增温方式,加强非极地苔原地区关于冬季升温的研究,注重关注冬季升温对植物-土壤微生物之间反馈作用的影响,重点关注冬季升温对生态系统的延滞效应。  相似文献   

20.
Mechanisms of plant species impacts on ecosystem nitrogen cycling   总被引:16,自引:0,他引:16  
Plant species are hypothesized to impact ecosystem nitrogen cycling in two distinctly different ways. First, differences in nitrogen use efficiency can lead to positive feedbacks on the rate of nitrogen cycling. Alternatively, plant species can also control the inputs and losses of nitrogen from ecosystems. Our current understanding of litter decomposition shows that most nitrogen present within litter is not released during decomposition but incorporated into soil organic matter. This nitrogen retention is caused by an increase in the relative nitrogen content in decomposing litter and a much lower carbon‐to‐nitrogen ratio of soil organic matter. The long time lag between plant litter formation and the actual release of nitrogen from the litter results in a bottleneck, which prevents feedbacks of plant quality differences on nitrogen cycling. Instead, rates of gross nitrogen mineralization, which are often an order of magnitude higher than net mineralization, indicate that nitrogen cycling within ecosystems is dominated by a microbial nitrogen loop. Nitrogen is released from the soil organic matter and incorporated into microbial biomass. Upon their death, the nitrogen is again incorporated into the soil organic matter. However, this microbial nitrogen loop is driven by plant‐supplied carbon and provides a strong negative feedback through nitrogen cycling on plant productivity. Evidence supporting this hypothesis is strong for temperate grassland ecosystems. For other terrestrial ecosystems, such as forests, tropical and boreal regions, the data are much more limited. Thus, current evidence does not support the view that differences in the efficiency of plant nitrogen use lead to positive feedbacks. In contrast, soil microbes are the dominant factor structuring ecosystem nitrogen cycling. Soil microbes derive nitrogen from the decomposition of soil organic matter, but this microbial activity is driven by recent plant carbon inputs. Changes in plant carbon inputs, resulting from plant species shifts, lead to a negative feedback through microbial nitrogen immobilization. In contrast, there is abundant evidence that plant species impact nitrogen inputs and losses, such as: atmospheric deposition, fire‐induced losses, nitrogen leaching, and nitrogen fixation, which is driven by carbon supply from plants to nitrogen fixers. Additionally, plants can influence the activity and composition of soil microbial communities, which has the potential to lead to differences in nitrification, denitrification and trace nitrogen gas losses. Plant species also impact herbivore behaviour and thereby have the potential to lead to animal‐facilitated movement of nitrogen between ecosystems. Thus, current evidence supports the view that plant species can have large impacts on ecosystem nitrogen cycling. However, species impacts are not caused by differences in plant quantity and quality, but by plant species impacts on nitrogen inputs and losses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号