首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the unfolding and refolding of horse muscle phosphoglycerate kinase were studied with three different signals: fluorescence emission intensity at 336 nm (excitation at 292 nm), ellipticity at 220 nm, and enzyme activity. The results corroborate the conclusion on the existence of intermediates in the folding pathway obtained from equilibrium studies. Kinetic studies showed at least two phases of refolding, as revealed by fluorescence as well as by circular dichroism measurements. During the fast phase, an intermediate was formed with a fluorescence intensity higher than that of the native protein, but devoid of enzyme activity. The fluorescence emission spectrum of this intermediate was determined. Only the slow phase was detected for the unfolding process; it was not attributable to proline isomerization. Several models were assumed, and simulated kinetics derived from these models were compared with the experimental results. A plausible one accounting for most of the data is proposed.  相似文献   

2.
Horse muscle phosphoglycerate kinase, like other mammalian phosphoglycerate kinases, contains seven cysteine residues of which two react rapidly with 5,5'-dithio-bis(2-nitrobenzoate) (Nbs2) following second-order kinetics (k = 640 M-1.s-1). Selective cyanylation of the fast-reacting cysteines, followed by chemical cleavage and subsequent sodium dodecyl sulfate/polyacrylamide gel electrophoresis analysis of the resulting polypeptides, suggested that these cysteines are at positions 378 and 379. Cysteine residues were introduced into yeast phosphoglycerate kinase by site-directed mutagenesis. Mutant enzymes, each containing only one cysteine residue at position 364, 376, or 377, were constructed from a mutant devoid of cysteine (Cys97----Ala). In the last two mutants, the cysteines were at positions corresponding to Cys378 and Cys379, respectively, in the horse muscle enzyme. The chemical reactivity of the cysteine groups in these latter two yeast mutant enzymes was similar to that of the fast-reacting cysteines in the horse muscle enzyme. Furthermore, they were similarly modified upon substrate binding. All these data demonstrate unambiguously that the fast-reacting cysteines in the horse muscle enzyme are Cys378 and Cys379.  相似文献   

3.
Homogeneous phosphoglycerate kinase from bovine liver possesses a maximum ultraviolet absorption at 278 nm (A 1%,1Cm 280 equals 6.7; Amax/Amin equals 2.26; e280 equals 31.5 mM(-1) X cm(-1). The enzyme consists of about 420 amino-acid residues and is a slightly acidic protein with an isoelectric point of 6.5 as expected from amino-acid analysis. The most notable features of the chemical composition are two tryptophan, 12 methionine and four half-cystine residues per enzyme molecule. Although phosphoglycerate kinases from mammalian tissues are partially similar to each other, clear differences in serine, glutamic acid, glycine, cysteine, valine, leucine, tyrosine, tryptophan and arginine contents were found. Fingerprinting and column chromatography of tryptic digests of the S-carboxymethylated protein confirm the data of amino-acid analysis. Liver phosphoglycerate kinase is inactivated when modified with either p-chloromercuribenzoate or 5,5'dithio-bis(2-nitrobenzoic acid) (Nbs2). The enzyme has two thiol groups available for reaction with Nbs2 under denaturing conditions, one of which is essential for catalysis. After reduction by NaBH4 four cysteine residues per molecule were determined with Nbs2, sugessting the presence of a disulfide bridge. Using sedimentation equilibrium studies, the molecular weight was found to be 49600. Gel filtration yielded values of 43000-50000. By analytical dodecylsulfate-polyacrylamide gel electrophoresis a molecular weight of 45600 was estimated. Inconsistent with these results in the value 37500 obtained by thin-layer gel chromatography in 6 M guanidine-HCl. Sedimentation velocity experiments revealed a sedimentation coefficient s20,w equals 3.4 S. The Stokes radius was 2.77 nm, the partial specific volume v 0.747 ml x g(-1). The diffusion coefficient was found to be 76.9 mum2 x s(-1) by analytical gel filtration. From these data a molecular weight of 44000 was calculated. Other physical constants of bovine-liver phosphoglycerate kinase are: frictional ratio f/f0 equals 1.18, axial ratio equals 3.3, maximal degree of hydration equals 0.1 g per g of protein. Bovine-layer phosphoglycerate kinase could not be dissociated into smaller subunits by treatments which have caused dissociation of various other proteins (8 M urea, 6 M guanidine-HCl, dodecyl sulfate, carboxymethylation, maleylation). All experiments strongly support the lack of subunit structure of the enzyme. Some characteristics of bovine-liver phosphoglycerate kinase are compared with the corresponding proteins from rabbit muscle, yeast and human erythrocytes.  相似文献   

4.
The complete amino acid sequence of yeast phosphoglycerate kinase.   总被引:4,自引:1,他引:3       下载免费PDF全文
The complete amino acid sequence of yeast phosphoglycerate kinase, comprising 415 residues, was determined. The sequence of residues 1-173 was deduced mainly from nucleotide sequence analysis of a series of overlapping fragments derived from the relevant portion of a 2.95-kilobase endonuclease-HindIII-digest fragment containing the yeast phosphoglycerate kinase gene. The sequence of residues 174-415 was deduced mainly from amino acid sequence analysis of three CNBr-cleavage fragments, and from peptides derived from these fragments after digestion by a number of proteolytic enzymes. Cleavage at the two tryptophan residues with o-iodosobenzoic acid was also used to isolate fragments suitable for amino acid sequence analysis. Determination of the complete sequence now allows a detailed interpretation of the existing high-resolution X-ray-crystallographic structure. The sequence -Ile-Ile-Gly-Gly-Gly- occurs twice in distant parts of the linear sequence (residues 232-236 and 367-371). Both these regions contribute to the nucleoside phosphate-binding site. A comparison of the sequence of yeast phosphoglycerate kinase reported here with the sequences of phosphoglycerate kinase from horse muscle and human erythrocytes shows that the yeast enzyme is 64% identical with the mammalian enzymes. The yeast has strikingly fewer methionine, cysteine and tryptophan residues.  相似文献   

5.
Low Resolution Structure of Yeast Phosphoglycerate Kinase   总被引:2,自引:0,他引:2  
Yeast phosphoglycerate kinase, like the same enzyme from horse muscle, has two structural lobes, reminiscent of a dimer rather than a monomer.  相似文献   

6.
J E Scheffler  M Cohn 《Biochemistry》1986,25(13):3788-3796
A photochemically induced dynamic nuclear polarization (photo-CIDNP) study of yeast and horse muscle phosphoglycerate kinase with flavin dyes was undertaken to identify the histidine, tryptophan, and tyrosine resonances in the aromatic region of the simplified 1H NMR spectra of these enzymes and to investigate the effect of substrates on the resonances observable by CIDNP. Identification of the CIDNP-enhanced resonances with respect to the type of amino acid residue has been achieved since only tyrosine yields emission peaks and the dye 8-aminoriboflavin enhances tryptophan but not histidine. By use of the known amino acid sequences and structures derived from X-ray crystallographic studies of the enzymes from the two species, assignment of the specific residues in the protein sequences giving rise to the CIDNP spectra was partially achieved. In addition, flavin dye accessibility was used to probe any changes in enzyme structure induced by substrate binding. The nine resonance peaks observed in the CIDNP spectrum of yeast phosphoglycerate kinase have been assigned tentatively to five residues: histidines-53 and -151, tryptophan-310, and tyrosines-48 and -195. The accessibility of a tyrosine to photoexcited flavin is reduced in the presence of MgATP. Since the tyrosine residues are located some distance from the MgATP binding site of the catalytic center, it is proposed either that this change is due to a distant conformational change or that a second metal-ATP site inferred from other studies lies close to one of the tyrosines. Horse muscle phosphoglycerate kinase exhibits seven resonances by CIDNP NMR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Flexibility and folding of phosphoglycerate kinase   总被引:1,自引:0,他引:1  
Flexibility and folding of phosphoglycerate kinase, a two-domain monomeric enzyme, have been studied using a wide variety of methods including theoretical approaches. Mutants of yeast phosphoglycerate kinase have been prepared in order to introduce cysteinyl residues as local probes throughout the molecule without perturbating significantly the structural or the functional properties of the enzyme. The apparent reactivity of a unique cysteine in each mutant has been used to study the flexibility of PGK. The regions of larger mobility have been found around residue 183 on segment beta F in the N-domain and residue 376 on helix XII in the C-domain. These regions are also parts of the molecule which unfold first. Ligand binding induces conformational motions in the molecule, especially in the regions located in the cleft. Moreover, the results obtained by introducing a fluorescent probe covalently linked to a cysteine are in agreement with the helix scissor motion of helices 7 and 14 assumed by Blake to direct the hinge bending motion of the domains during the catalytic cycle. The folding process of both horse muscle and yeast phosphoglycerate kinases involves intermediates. These intermediates are more stable in the horse muscle than in the yeast enzyme. In both enzymes, domains behave as structural modules capable of folding and stabilizing independently, but in the horse muscle enzyme the C-domain is more stable and refolds prior to the N-domain, contrary to that which has been observed in the yeast enzyme. A direct demonstration of the independence of domains in yeast phosphoglycerate kinase has been provided following the obtention of separated domains by site-directed mutagenesis. These domains have a native-like structure and refold spontaneously after denaturation by guanidine hydrochloride.  相似文献   

8.
The steady-state reactant levels of triose-phosphate isomerase and the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system were examined in guinea-pig cardiac muscle. Key glycolytic intermediates, including glyceraldehyde 3-phosphate were directly measured and compared with those of creatine kinase. Non-working Langendorff hearts as well as isolated working hearts were perfused with 5 mM glucose (plus insulin) under normoxia conditions to maintain lactate dehydrogenase near-equilibrium. The cytosolic phosphorylation potential ([ATP]/([ADP].[Pi])) was derived from creatine kinase and the free [NAD+]/([NADH].[H+]) ratio from lactate dehydrogenase. In Langendorff hearts glycolysis was varied from near-zero flux (hyperkalemic cardiac arrest) to higher than normal flux (normal and maximum catecholamine stimulation). The triose-phosphate isomerase was near-equilibrium only in control or potassium-arrested Langendorff hearts as well as in postischemic 'stunned' hearts. However, when glycolytic flux increased due to norepinephrine or due to physiological pressure-volume work the enzyme was displaced from equilibrium. The alternative phosphorylation ratio [ATP]'/([ADP]).[Pi]) was derived from the magnesium-dependent glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system assigning free magnesium different values in the physiological range (0.1-2.0 mM). As predicted, [ATP]/([ADP].[Pi]) and [ATP]'/([ADP]'.[Pi]') were in excellent agreement when glycolysis was virtually halted by hyperkalemic arrest (flux approximately 0.2 mumol C3.min-1.g dry mass-1). However, the equality between the two phosphorylation ratios was not abolished upon resumption of spontaneous beating and also not during adrenergic stimulation (flux approximately 5-14 mumol C3.min-1.g dry mass-1). In contrast, when flux increased due to transition from no-work to physiological pressure-volume work (rate increase from approximately 3 to 11 mumol C3.min-1.g dry mass-1), the two ratios were markedly different indicating disequilibrium of the glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase. Only during adrenergic stimulation or postischemic myocardial 'stunning', not due to hydraulic work load per se, glyceraldehyde-3-phosphate levels increased from about 4 microM to greater than or equal to 16 microM. Thus the guinea-pig cardiac glyceraldehyde-3-phosphate dehydrogenase/phosphoglycerate kinase system can realize the potential for near-equilibrium catalysis at significant flux provided glyceraldehyde-3-phosphate levels rise, e.g., due to 'stunning' or adrenergic hormones.  相似文献   

9.
1. The testis-specific isoenzyme of phosphoglycerate kinase (phosphoglycerate kinase B) has been isolated from ram testes using a procedure which separates it from 'normal' phosphoglycerate kinase which is also present in testis tissue. The purification procedure is described. 2. The best preparations had no detectable impurity on electrophoresis, and had specific activities comparable with the same enzyme from other sources. 3. Kinetic studies indicated that the two isoenzymes have identical properties, within experimental error, for substrate affinity (for MgATP, 3-phosphoglycerate and MgADP), energy of activation and thermal denaturation. 4. The molecular weights of both isoenzymes were not distinguishably different from those previously reported, as measured by polyacrylamide/dodecylsulphate electrophoresis. The amino acid compositions showed only slight differences, and tryptic peptide maps showed that there was close homology of sequence. Starch gel electrophoresis at pH 6.5 indicates that the B isoenzyme has 1--2 more positive charges than the A. 5. Phosphoglycerate kinase A isolated from sheep muscle was shown, within experimental error, to be identical to the phosphoglycerate kinase A isolated from testis. 6. The results further substantiate the suggestion that the B isoenzyme is coded by a gene which was duplicated from the phosphoglycerate kinase A gene.  相似文献   

10.
The reversibility of the unfolding-refolding transition of horse muscle phosphoglycerate kinase, induced by guanidine hydrochloride (Gdn X HCl), was studied using the regain of enzyme activity as a probe of the native structure. An irreversibility in the reactivation process was detected when the protein was incubated in a critical concentration of denaturant (0.7 +/- 0.1 M Gdn X HCl). This apparent irreversibility was observed for the unfolding process (N----D) as well as for the refolding process (D----N). The formation of the trough followed biphasic kinetics at 23 degrees C, the first phase obeying a first-order reaction corresponded to an isomerization of an intermediate; the second phase, protein-concentration-dependent, was suppressed by lowering the temperature to 4 degrees C. The structural properties of the inactive species were studied; all the beta structures were recovered, but about 29% of the helical structures remained unfolded, and two SH groups were buried. Simulated kinetics were compared with the experimental results and were used to extend the minimum folding scheme previously proposed from equilibrium and kinetic studies [Betton et al. (1984) Biochemistry 23, 6654-6661; Betton et al. (1985) Biochemistry 24, 4570-4577]. The intermediates trapped under these conditions were structured but devoid of catalytic activity. Taking into account the structural properties of these species, the nature of the interactions involved in their formation and stabilization is discussed.  相似文献   

11.
Isolation of phosphoglycerate kinases by affinity chromatography   总被引:9,自引:0,他引:9  
A variety of Sepharose derivatives containing DL-O-phosphorylserine or adenosine nucleotides with different points of attachment, has been synthesized and tested for affinity to phosphoglycerate kinase. The most effective gels contained periodate-oxidized ATP or ADP bound via the ribose by hydrazone formation to adipoyl-dihydrazo-Sepharose. The effect of pH, magnesium and buffer ions on the binding capacity of the ATP derivative of Sepharose has been examined. Optimal elution of phosphoglycerate kinase was investigated using different combinations of adenosine nucleotides, 3-phosphogylcerate and magnesium ions. A method is presented giving conditions for the purification of phosphoglycerate kinase from different sources (spinach, human erythrocytes, human, rabbit and trout muscle). It includes extract preparation, affinity chromatography and gel filtration. The method is greatly superior to known isolation procedures by virtue of its technical simplicity, excellent yield (85-100%) and reproducability. The capacity of the ATP-ribosyl-adipoyl-dihydrazo-Sepharose was 5 mg phosphoglycerate kinase per 1 g of matrix. Polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate indicated that the final products are homogeneous. The phosphoglycerate kinases from different sources appear to have the same affinity for this ATP derivative of Sepharose, the same molecular weight and the same specific activity.  相似文献   

12.
(1) A glycolytic enzyme, phosphoglycerate kinase [EC 2.7.2.3], was purified from cells of an extreme thermophile, Thermus thermophilus strain HB8. The enzyme was resistant to heat, and no loss of activity was observed after incubation for 10--20 min at 79 degrees C. (2) Catalytic properties such as pH optimum (pH 6--8.5), kinetic parameters (Km=0.28 mM for ATP, 1.79 mM for glycerate 3-phosphate), substrate specificity and inhibitors of the enzyme were investigated and compared with those of phosphoglycerate kinase from other sources. (3) The enzyme protein consists of a single polypeptide chain of molecular weight 44,600. The isoelectric point is 5.0 The amino acid composition of the enzyme was studied. The contents of ordered secondary structures were estimated to be 29% alpha-helix and 11% pleated sheet from the circular dichroic spectrum of the enzyme protein. (4) The fluorescence spectrum of the enzyme protein showed an emission maximum at 320 nm when excited at 280 nm. The quantum yield was 0.19. Tryptophyl fluorescence was not quenched, in contrast to the fluorescence reported for yeast phosphoglycerate kinase.  相似文献   

13.
We developed a novel procedure for isolation of the muscle isozymes of aldolase, triose phosphate isomerase (TPI), glyceraldehyde phosphate dehydrogenase (GAPDH), phosphoglycerate kinase (PGK), phosphoglycerate mutase (PGM), enolase, pyruvate kinase (PK) and lactic dehydrogenase (LDH), and also creatine kinase (CK), at high purity, specific activity and yield. Protein was extracted from chicken breast muscle and glycolytic enzymes were purified by a three step procedure consisting of: Ammonium sulfate combined with pH fractionation. Phosphocellulose chromatography with performance of high pressure liquid chromatography, exploiting a pH gradient formed by a gradient of the buffering ion for protein elution. Affinity chromatography causing elution by substrate or pH. The enzymes, obtained at over 95% purity as judged by specific activity and silver stained electropherograms, were injected into sheep. Antibody for each enzyme was purified on specific immunosorbant and its specificity was verified by immunotransfer analysis.  相似文献   

14.
We present in this paper the first report about identification of several fractions of phosphoglycerate mutase (PGlyM) activity using starch gel electrophoresis and two different buffer systems. A typical muscle form of PGlyM was detected. It is also shown that isozymes of phosphoglycerate kinase (PGK) can be separated through the buffer system used by Spencer et al; (1964) for the phosphogluco mutase.  相似文献   

15.
Reversible thermal denaturation of phosphoglycerate kinases (E.C. 2.7.2.3) from an extremely thermophilic bacterium Thermus thermophilus and from yeast were studied by measuring their circular dichroism and fluorescence intensity. The thermal denaturation in the presence of guanidine hydrochloride was completely reversible. The thermodynamic parameters for the reaction were calculated based on a two-state mechanism. The free energy changes in denaturation at 25 °C in the absence of denaturant were estimated to be 11.87 ± 0.21 kcal/mol for T. thermophilus phosphoglycerate kinase and 5.33 ± 0.13 kcal/mol for that of yeast. It was found that the van't Hoff plot of the equilibrium constant for the denaturation reaction was almost independent of temperature in the temperature range 0 to 60 °C for T. thermophilus phosphoglycerate kinase, while that of yeast phosphoglycerate kinase was strongly temperature-dependent as reported for other thermolabile proteins. The enthalpy change in denaturation varies from 0.03 to 6.2 kcal/mol (0 to 60 °C) for T. thermophilus phosphoglycerate kinase and from ?27 to 31 kcal/mol (10 to 35 °C) for yeast enzyme. The entropy change in denaturation varies from ?3.9 to 21 entropy units for T. thermophilus phosphoglycerate kinase and ?96 to 104 entropys unit (10 to 35 °C) for yeast enzyme. The heat capacity change in denaturation is between 1.4 and 63 cal/deg. mol for the thermophile enzyme and between 1530 and 1750 cal/deg. mol for yeast enzyme at 20 °C. The observations that the enthalpy changes as well as the heat capacity changes in denaturation of the thermophilic enzyme were negligibly small suggest an explanation for the unusual stability to heat of T. thermophilus phosphoglycerate kinase.We also propose three possible mechanisms for the thermostability of proteins in general.  相似文献   

16.
Phosphoglycerate kinase was isolated by affinity chromatography from human skeletal muscle and erythrocytes. As in the tissue extracts, the purified enzyme showed in Cellogel electrophoresis one major and two minor bands with phosphoglycerate kinase activity. The multiple forms were separated by chromatography on CM-Sepharose. From the three separated forms, A, B, and C, the latter was not detectable in electrophoresis of tissue extracts or in the purified unresolved phosphoglycerate kinase. The faintest, most anodically migrating form observed in the tissue extracts could not be isolated in pure form by chromatography on CM-Sepharose. The electrophoretic mobility of the phosphoglycerate kinase forms depended strongly on the buffer systems used. The different forms had identical molecular weight, substrate affinity, and heat stability and were inhibited to the same extent by antibody. They could also not be separated by column affinity chromatography. Small differences were found in thiol group content and in the specific activity, the latter being a consequence of diminished free sulfhydryl residues. Exposure to either reductive or oxidative conditions changed the specific activity, but did not result in interconversion among the pure forms. The multiple forms probably arise as a result of epigenetic factors occurring after the primary polypeptide chain has been synthesized.  相似文献   

17.
The concentrations of following metabolites were determined in freeze-clamped gastrocnemius muscle samples: glucose 1-phosphate, glucose 6-phosphate, glucose, fructose 1,6-diphosphate, fructose 6-phosphate, D-glyceraldehyde 3-phosphate. dihydroxyacetone phosphate, phosphoenolpyruvate, pyruvate, glycerol 3-phosphate, glycerol, creatine phosphate, creatine, glycerate 3-phosphate, glycerate 2-phosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, inorganic phosphate. The results showed that within the limits of experimental error, concentration homeostasis for this metabolites is founded at least in some cases on equilibria between enzymic transformations. Discrepancies between constant mass ratios measured in this study and equilibrium constants allow the free energy variation delta G to keep creatine phosphate at high concentration to be calculated. For the phosphoglycerate mutase system, the equilibrium constant in controls and trained animals is unchanged and corresponds to that in vitro. Training hindered glycolysis and favoured phosphorylation of creatine by glycerol 3-phosphate. Metabolites of the pyruvate kinase and hexokinase system cannot be homogeneously distributed in one space. The creatine kinase system is also separated from the hexokinase und pyruvate kinase system. A compartition of glycolytic process in gastrocnemius muscle seems to be inferred from these results.  相似文献   

18.
J M Betton  M Desmadril  J M Yon 《Biochemistry》1989,28(13):5421-5428
The accessibility of peptide bonds to cleavage by Staphylococcus aureus V8 protease bound on a Sepharose matrix was used as a conformational probe in the study of the unfolding-folding transition of phosphoglycerate kinase induced by guanidine hydrochloride. It was shown that the protein is resistant to proteolysis below a denaturant concentration of 0.4 M. The transition curve, determined by susceptibility toward proteolysis, was similar to that obtained following the enzyme activity [Betton et al. (1984) Biochemistry 23, 6654-6661]. Proteolysis under conditions where the folding intermediates are more populated, i.e., 0.7 M Gdn.HCl, gave two major fragments of Mr 25K and 11K, respectively. The 25K polypeptide fragment was identified as the carboxy-terminal domain. Its conformation was similar to that of a folding intermediate trapped at a critical concentration of denaturant, and in this form, it was not able to bind nucleotide substrates [Mitraki et al. (1987) Eur. J. Biochem. 163, 29-34]. From the present data and those previously reported, we concluded that the intermediate detected on the folding pathway of phosphoglycerate kinase has a partially folded carboxy-terminal domain and an unfolded amino-terminal domain.  相似文献   

19.
Pressure-induced denaturation of yeast phosphoglycerate kinase was studied at various temperatures, as a model double-domain protein, using intrinsic fluorescence, 4th derivative absorbance, CD, and DSC. A thermodynamic transition intermediate was observed in the pressure-denaturation, as was reported for the cold denaturation. From the different response of Trp and Tyr residues, as monitored by fluorescence and 4th derivative absorbance changes, the C-terminal domain carrying all the Trp residues seemed to exert structural changes at relatively lower pressure. A further structural change involving both domains was observed at higher pressures. The two-step changes occurred almost simultaneously during heat denaturation.  相似文献   

20.
1. Starting with (NH4)2SO4 fractions of muscle extracts, procedures for purifying four to six separate enzymes from each fraction by using affinity-elution-chromatographic techniques are described. 2. Schemes for purifying 12 separate enzymes from rabbit muscle, and eight from chicken muscle extracts, are included. In nearly all cases the overall procedure involves three steps: the initial (NH4)2SO4 fractionation, the ion-exchange chromatography with affinity elution of the enzyme, and gel filtration. The specific activities of the enzymes so purified are comparable with the highest values in the literature. 3. The five schemes described include illustrations of affinity elution of the separate enzymes at different pH values, at different ionic strengths and in combination with conventional gradient elution. They also include stepwise adsorption on columns at different pH values. 4. Separation of two electrophoretically differing forms of phosphoglycerate kinase was achieved by gradient affinity elution from CM-cellulose. The lower-pI form was eluted by a lower concentration of substrate than the higher-pI form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号