首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphological and ultrastructural aspects of heterocyst differentiation in the branching, filamentous cyanobacterium Mastigocladus laminosus were examined with light and electron microscopy. The earliest differentiation stages involved cytoplasmic changes, including (i) rapid degradation of carboxysomes, (ii) degradation of polysaccharide granules, and (iii) accumulation of electron-dense ribosomal or protein material (or both). Intermediate differentiation stages involved synthesis of a homogeneous extra wall layer, development of necks leading to adjacent cells, and elaboration of a complex system of intracytoplasmic membranes. Late differentiation stages included further development of necks and continued elaboration of membranes. Mature heterocysts possessed a uniformly electron-dense cytoplasm that contained large numbers of closely packed membranes, some of which were arranged in lamellar stacks. Mature heterocysts lacked all of the inclusion bodies present in undifferentiated vegetative cells, but contained a number of unusual spherical inclusions of variable electron density. Cells in both narrow and wide filaments were capable of differentiating. No regular heterocyst spacing pattern was observed in the narrow filaments; the number of vegetative cells between consecutive heterocysts of any given filament varied by a factor of 10. Heterocysts developed at a variety of locations in the wide, branching filaments, although the majority of them were situated adjacent to branch points. M. laminosus displayed a marked tendency to produce sets of adjacent heterocysts or proheterocysts (or both) that were not separated from each other by vegetative cells. Groups of four or more adjacent heterocysts or proheterocysts occurred frequently in wide filaments, and in some of these filaments virtually all of the cells appeared to be capable of differentiating into heterocysts.  相似文献   

2.
In the filamentous, heterocyst-forming cyanobacteria, two different cell types, the CO(2)-fixing vegetative cells and the N(2)-fixing heterocysts, exchange nutrients and regulators for diazotrophic growth. In the model organism Anabaena sp. strain PCC 7120, inactivation of fraH produces filament fragmentation under conditions of combined nitrogen deprivation, releasing numerous isolated heterocysts. Transmission electron microscopy of samples prepared by either high-pressure cryo-fixation or chemical fixation showed that the heterocysts of a ΔfraH mutant lack the intracellular membrane system structured close to the heterocyst poles, known as the honeycomb, that is characteristic of wild-type heterocysts. Using a green fluorescent protein translational fusion to the carboxyl terminus of FraH (FraH-C-GFP), confocal microscopy showed spots of fluorescence located at the periphery of the vegetative cells in filaments grown in the presence of nitrate. After incubation in the absence of combined nitrogen, localization of FraH-C-GFP changed substantially, and the GFP fluorescence was conspicuously located at the cell poles in the heterocysts. Fluorescence microscopy and deconvolution of images showed that GFP fluorescence originated mainly from the region next to the cyanophycin plug present at the heterocyst poles. Intercellular transfer of the fluorescent tracers calcein (622 Da) and 5-carboxyfluorescein (374 Da) was either not impaired or only partially impaired in the ΔfraH mutant, suggesting that FraH is not important for intercellular molecular exchange. Location of FraH close to the honeycomb membrane structure and lack of such structure in the ΔfraH mutant suggest a role of FraH in reorganization of intracellular membranes, which may involve generation of new membranes, during heterocyst differentiation.  相似文献   

3.
The effects of nitrogen starvation on the morphology and ultrastructure of the branching, filamentous cyanobacterium Mastigocladus laminosus were examined with light and electron microscopy. The internal ultrastructural characteristics of vegetative cells changed markedly during nitrogen starvation. Carboxysomes were degraded, while polyphosphate bodies and lipid bodies accumulated. The ultrastructure of mature heterocysts was also affected by nitrogen starvation; their intracytoplasmic membranes vesiculated to form vacuolelike structures and, eventually, large empty regions in the cytoplasm. Nitrogen starvation stimulated extensive heterocyst differentiation in M. laminosus, producing heterocyst frequencies of 17.5% in narrow filaments and 28.3% in wide filaments within 44 h after transfer to N-free conditions. Cells in wide filaments differentiated so extensively that only 16.8% of them failed to initiate the differentiation process within 44 h.  相似文献   

4.
Filamentous heterocyst‐forming cyanobacteria are a beautiful example of prokaryotic multicellularity. The filaments can achieve simultaneous nitrogen fixation and oxygenic photosynthesis by cooperation between two cell types: the photosynthetic vegetative cells and the nitrogen‐fixing heterocysts. The multicellular features exhibited by the system include differentiation of different cell types, metabolic interdependence and even pattern formation, as the spacing of heterocysts along the filament is non‐random. Recent years have seen exciting progress both in understanding the control of heterocyst differentiation, and also in understanding the function of ‘septal junctions’: an array of pore‐like structures at the cell junctions that allow intercellular communication by facilitating the diffusion of small molecules from cell to cell. A new report by Rivers et al. (2014) makes the connection between pattern formation and intercellular communication by showing that a mutation that partially disables the septal junctions leads to a decrease in the range of a signal dependent on the HetN protein that is one of the factors controlling heterocyst spacing. This suggests that the signal travels from cell to cell by diffusion through the septal junctions, opening the door to quantitative understanding of the mechanism that controls heterocyst spacing in filamentous cyanobacteria.  相似文献   

5.
A new light microscopic method for identifying heterocysts and proheterocysts in morphologically complex cyanobacteria was evaluated for reliability and usefulness. Mature heterocysts and proheterocysts could be distinguished readily from vegetative cells in 0.25 micron sections of fixed and embedded material after staining with toluidine blue. Examination by light and electron microscopy of the same specimens indicated that the staining reactions which served to differentiate these cell types were both reproducible and accurate. Light microscopic analysis of serial sections stained with toluidine blue greatly facilitated localization of heterocysts and proheterocysts in the complex, branching cyanobacterium, Mastigocladus laminosus, even when its filaments of cells were intertwined in thick mats.  相似文献   

6.
7.
The filamentous cyanobacterium Anabaena sp. PCC 7120 can differentiate into heterocysts to fix atmospheric nitrogen. During cell differentiation, cellular morphology and gene expression undergo a series of significant changes. To uncover the mechanisms responsible for these alterations, we built protein–protein interaction (PPI) networks for these two cell types by cofractionation coupled with mass spectrometry. We predicted 280 and 215 protein complexes, with 6322 and 2791 high-confidence PPIs in vegetative cells and heterocysts, respectively. Most of the proteins in both types of cells presented similar elution profiles, whereas the elution peaks of 438 proteins showed significant changes. We observed that some well-known complexes recruited new members in heterocysts, such as ribosomes, diflavin flavoprotein, and cytochrome c oxidase. Photosynthetic complexes, including photosystem I, photosystem II, and phycobilisome, remained in both vegetative cells and heterocysts for electron transfer and energy generation. Besides that, PPI data also reveal new functions of proteins. For example, the hypothetical protein Alr4359 was found to interact with FraH and Alr4119 in heterocysts and was located on heterocyst poles, thereby influencing the diazotrophic growth of filaments. The overexpression of Alr4359 suspended heterocyst formation and altered the pigment composition and filament length. This work demonstrates the differences in protein assemblies and provides insight into physiological regulation during cell differentiation.  相似文献   

8.
Nitrogenase activity was measured in leaves along the main stem axes of Azolla pinnata R. Br. The activity was negligible in leaves of the apical region, rapidly increased to a maximum as leaves matured, and declined in aging leaves. In situ absorption and fluorescence emission spectra were obtained for individual vegetative cells and heterocysts in filaments of the A. pinnata and Azolla caroliniana endophytes removed from the cavities of progressively older leaves. These spectra unequivocally demonstrate the occurrence of phycobiliproteins in the two cell types of both endophytes at the onset of heterocyst differentiation in filaments from young leaves, during the period of maximal nitrogenase activity in filaments from mature leaves, and in filaments from leaves entering senescence. Phycobiliproteins of the A. caroliniana endophyte were purified and extinction coefficients determined for the phycoerythrocyanin, phycocyanin, and allophycocyanin. The phycobiliprotein content and complement of sequential leaf segments from main stem axes and of vegetative cell and heterocyst preparations were measured in crude extracts. There was no obvious alteration of the phycobiliprotein complement associated with increasing heterocyst frequency of the endophyte in sequential leaf segments and the phycobiliprotein complement of heterocysts was not appreciably different from that of vegetative cells. These findings indicate that the phycobiliprotein complement of the vegetative cell precursor is retained in the heterocysts of the endophyte.  相似文献   

9.
The present study gives evidence for the presence of cellulose in the heterocyst envelope of blue-green algae by means of electron microscopy, cellulase treatments and specific staining and demonstrates the role of this cellulose for the protection of the heterocyst nitrogenase during acetylene reduction. Experiments with lysozyme and cellulase suggest that nitrogen fixation in heterocystous blue-green algae under aerobic conditions is functionally effective only when an intimate relationship exists between vegetative cells and heterocysts and both cell types have intact wall structures.  相似文献   

10.
A new light microscopic method for identifying heterocysts and proheterocysts in morphologically complex cyanobacteria was evaluated for reliability and usefulness. Mature heterocysts and proheterocysts could be distinguished readily from vegetative cells in 0.25 µm sections of fixed and embedded material after staining with toluidine blue. Examination by light and electron microscopy of the same specimens indicated that the staining reactions which served to differentiate these cell types were both reproducible and accurate. Light microscopic analysis of serial sections stained with toluidire blue greatly facilitated localization of heterocysts and proheterocysts in the complex, branching cyanobacterium, Mastigocla-dus laminosus, even when its filaments of cells were intertwined in thick mats.  相似文献   

11.
Protein phosphatases play important roles in the regulation of cell growth, division and differentiation. The cyanobacterium Anabaena PCC 7120 is able to differentiate heterocysts specialized in nitrogen fixation. To protect the nitrogenase from inactivation by oxygen, heterocyst envelope possesses a layer of polysaccharide and a layer of glycolipids. In the present study, we characterized All1731 (PrpJ), a protein phosphatase from Anabaena PCC 7120. prpJ was constitutively expressed in both vegetative cells and heterocysts. Under diazotrophic conditions, the mutant DeltaprpJ (S20) did not grow, lacked only one of the two heterocyst glycolipids, and fragmented extensively at the junctions between developing cells and vegetative cells. No heterocyst glycolipid layer could be observed in the mutant by electron microscopy. The inactivation of prpJ affected the expression of hglE(A) and nifH, two genes necessary for the formation of the glycolipid layer of heterocysts and the nitrogenase respectively. PrpJ displayed a phosphatase activity characteristic of PP2C-type protein phosphatases, and was localized on the plasma membrane. The function of prpJ establishes a new control point for heterocyst maturation because it regulates the synthesis of only one of the two heterocyst glycolipids while all other genes so far analysed regulate the synthesis of both heterocyst glycolipids.  相似文献   

12.
The effect of ammonia and sulfide on rifampicin-induced heterocyst differentiation was studied in the nitrogen-fixing cyanobacteriumNostoc linckia. Aerobic growth with nitrogen gas of the cyanobacterium was greatly affected by rifampicin with formation of multiple heterocysts in chains in the filaments whereas ammonia in the medium reversed the rifampicin inhibition of growth and prevented the induction of heterocysts. In a sulfide medium the suppression exerted by rifampicin on aerobic growth with nitrogen gas and heterocyst induction was found to be considerably reduced. The results suggest two interesting points,viz. that (i) rifampicin interferes with the nitrogen-fixing function of heterocysts, and (ii) it checks the synthesis of an unknown heterocyst, inhibitor and thus permits the adjacent vegetative cells to differentiate into heterocysts in chains.  相似文献   

13.
14.
The morphological and ultrastructural characteristics of the cyanobacterium Mastigocladus laminosus growing under N2-fixing conditions were examined with light and electron microscopy. Vegetative cells in narrow filaments contained randomly arranged segments of thylakoid membrane, centrally located carboxysomes (polyhedral bodies), peripherally located lipid bodies, and large numbers of polysaccharide granules in addition to nuclear material and ribosomes. The ultrastructural characteristics of cells in wide filaments were similar, except for increased numbers of carboxysomes and lipid bodies. Heterocytes and proheterocysts developed at a variety of locations in narrow filaments, wide filaments, and the lateral branches off of wide filaments. Akinetes were not observed in any of the filaments. The morphological characteristics of heterocysts and proheterocysts were variable and depended on those of the vegative cells from which the heterocysts and proheterocysts developed. Mature M. laminosus heterocysts were somewhat similar to those formed in other cyanobacterial genera, but they possessed a number of distinct and unique ultrastructural characteristics, including (i) the absence of a fibrous and, possibly, a laminated wall layer, (ii) the presence many closely packed membranes throughout most of the cytoplasm, and (iii) the presence of unidentified, spherical inclusion bodies of variable electron density.  相似文献   

15.
The nitrogen-fixing cyanobacterium Anabaena flosaquae Lyngb.) De Breb. exhibited aggregation of heterocysts from different filaments in a eutrophic lake and when grown in unialgal culture. The resulting aggregated filaments formed unialgal flocculent masses having a thickness of several centimeters that apparently resulted from cohesive mucilage surrounding heterocysts. We tested the effects of heterocyst aggregation on nitrogenase activity (NA) and photosynthesis in relation to microscale environmental O2 gradients. The redox indicator 2,3,5-triphenyl tetrazolium chloride showed that aggregated heterocysts had lower intracellular redox potential than those that were dispersed. Microelectrode measurements showed that heterocyst aggregates in actively photosynthesizing flocculent masses were surrounded by a microzone of O2 30% higher than in the surrounding water: dispersed cells exhibited no such elevated O2 microzone. Despite high levels of O2, NA was greater in aggregated than dispersed samples, Microscale irradiance measurements made with a fiber optic light probe showed that 40% of the incident light was absorbed within the first 3 mm of a 1-cm-thick flocculent mass. The microscale irradiance data, together with nitrogenase and photosynthesis versus irradiance data, imply that the ratio of N:C fixation is lowest in filaments on the outside of 1.5–2.0-cm masses and increases toward the center.  相似文献   

16.
Diazotrophic heterocyst formation in the filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest pattern formations known to occur in cell differentiation. Most previous studies on heterocyst patterning were based on statistical analysis using cells collected or observed at different times from a liquid culture, which would mask stochastic fluctuations affecting the process of pattern formation dynamics in a single bacterial filament. In order to analyze the spatiotemporal dynamics of heterocyst formation at the single filament level, here we developed a culture system to monitor simultaneously bacterial development, gene expression, and phycobilisome fluorescence. We also developed micro-liquid chamber arrays to analyze multiple Anabaena filaments at the same time. Cell lineage analyses demonstrated that the initial distributions of hetR::gfp and phycobilisome fluorescence signals at nitrogen step-down were not correlated with the resulting distribution of developed heterocysts. Time-lapse observations also revealed a dynamic hetR expression profile at the single-filament level, including transient upregulation accompanying cell division, which did not always lead to heterocyst development. In addition, some cells differentiated into heterocysts without cell division after nitrogen step-down, suggesting that cell division in the mother cells is not an essential requirement for heterocyst differentiation.  相似文献   

17.
The filamentous cyanobacterium Nostoc sp. strain PCC 7120 is capable of fixing atmospheric nitrogen. The labile nature of the core process requires the terminal differentiation of vegetative cells to form heterocysts, specialized cells with altered cellular and metabolic infrastructure to mediate the N2-fixing process. We present an investigation targeting the cellular proteomic expression of the heterocysts compared to vegetative cells of a population cultured under N2-fixing conditions. New 8-plex iTRAQ reagents were used on enriched replicate heterocyst and vegetative cells, and replicate N2-fixing and non-N2-fixing filaments to achieve accurate measurements. With this approach, we successfully identified 506 proteins, where 402 had confident quantifications. Observations provided by purified heterocyst analysis enabled the elucidation of the dominant metabolic processes between the respective cell types, while emphasis on the filaments enabled an overall comparison. The level of analysis provided by this investigation presents various tools and knowledge that are important for future development of cyanobacterial biohydrogen production.  相似文献   

18.
The gene hetN encodes a putative oxidoreductase that is known to suppress heterocyst differentiation when present on a multicopy plasmid in Anabaena sp. PCC 7120. To mimic the hetN null phenotype and to examine where HetN acts in the regulatory cascade that controls heterocyst differentiation, we replaced the native chromosomal hetN promoter with the copper-inducible petE promoter. In the presence of copper, heterocyst formation was suppressed in undifferentiated filaments. When hetN expression was turned off by transferring cells to media lacking copper, the filaments initially displayed the wild-type pattern of single heterocysts but, 48 h after the induction of heterocyst formation, a pattern of multiple contiguous heterocysts predominated. Suppression of heterocyst formation by HetN appears to occur both upstream and downstream of the positive regulator HetR: overexpression of hetN in undifferentiated filaments prevents the wild-type pattern of hetR expression as well as the multiheterocyst phenotype normally observed when hetR is expressed from an inducible promoter. Green fluorescent protein fusions show that the expression of hetN in wild-type filaments normally occurs primarily in heterocysts. We propose that HetN is normally involved in the maintenance of heterocyst spacing after the initial heterocyst pattern has been established, but ectopic expression of hetN can also block the initial establishment of the pattern.  相似文献   

19.
Structures which may establish cytoplasmic continuity between adjacent cells of filamentous cyanobacteria have been observed by freeze-fracture electron microscopy. They are visible in the septum region of the plasma membrane as pits on the E-face (EF) and corresponding protrusions on the P-face (PF). Between 100 and 250 of these structures, termed microplasmodesmata, were present between adjacent vegetative cells in all four strains of heterocyst-forming filamentous cyanobacteria, Anabaena cylindrica Lemm, A. variabilis (IUCC B377), A. variabilis Kütz. (ATCC 29413) and Nostoc muscorum, examined. Only 30–40 microplasmodesmata were observed between adjacent cells in two species, Phormidium luridum and Plectonema boryanum, that do not form heterocysts. The results suggest that in species that form heterocysts a greater degree of cytoplasmic continuity is established, presumably to facilitate the exchange of metabolites. In species capable of forming heterocysts, the number of microplasmodesmata per septum between two adjacent vegetative cells remained constant whether the filaments were grown in the presence of NH4 and lacked heteroxysts or under N2-fixing conditions and contained heterocysts. When a vegetative cell differentiates into a heterocyst, about 80% of the existing microplasmodesmata are destroyed as the poles of the cell become constricted into narrow necks leaving smaller areas of contact with the adjacent vegetative cells.  相似文献   

20.
THE HETEROCYSTS OF BLUE-GREEN ALGAE (MYXOPHYCEAE)   总被引:1,自引:0,他引:1  
1. Heterocysts are found in many species of filamentous blue-green algae. They are cells of slightly larger size and with a more thickened wall than the vegetative cells. 2. Structural details of the heterocyst are: the presence of three additional wall layers, the absence of granules, sparse thylakoid network throughout, except at the poles where a dense coiling of membranes occurs. Other characters include the two pores at opposite poles ‘plugged’ with refractive material called the polar granule. 3. Peculiarities in the pigment composition of the heterocyst include an abundance of carotenoids and absence of phycobilins, and a short-wave form of chlorophyll a. 4. Unique glycolipids and an acyl lipid, not found in the vegetative cells of the algae or in other plant cells, are associated with the heterocyst. The glycolipids constitute the laminated layer of the wall and probably regulate diffusion of substances through it, whereas the acyl lipids are supposed to function as carriers and intermediates in the biosynthesis of the wall. 5. The heterocysts develop from vegetative cells, and the visible changes during differentiation include cell enlargement, synthesis of additional wall layers, disappearance of granules and reorientation and synthesis of the thylakoids. 6. Heterocysts are formed sequentially with characteristic cellular spacing during the growth of cultures in medium free from combined nitrogen. 7. Various sources of combined nitrogen inhibit heterocyst formation when supplied in the culture medium. Ammonium salts are among the most powerful inhibitors. Heterocysts are formed simultaneously and within a short period after transference of ammonia-grown non-heterocystous filaments to ammonia-free medium. 8. Incompletely differentiated heterocysts or proheterocysts are found in cultures grown in the presence of combined nitrogen. If two or more proheterocysts are close together generally a single one develops to maturity after a competitive interaction in medium free from combined nitrogen. This indicates that heterocyst formation is completed in two phases: phase I, synthesis and conservation of macromolecules, which takes place during growth in ammonia-containing medium: and phase 11, morphological differentiation of the heterocyst which is unaccompanied by growth in cell number. In the ammonia-free medium phase 11 quickly succeeds phase 1 and the whole process appears as a continuum. 9. Heterocyst formation shows a definite requirement for light. Red light favours heterocyst formation, whereas green and blue light do not. The effects of light seem to be mainly due to photosynthesis, although some effects may be morphogenetic. 10. Studies with metabolic inhibitors have revealed the involvement of photosynthesis, respiration and protein synthesis in heterocyst formation. Photosynthesis provides carbon skeletons, whereas ATP is most probably supplied by oxidative metabolism. 11. Various functions have been assigned to the heterocyst from time to time. Their role in akinete formation is suggested by (i) the formation of akinetes adjacent to the heterocysts and (ii) prevention of sporulation by detachment of the heterocysts from the vegetative cells (potential akinetes). Despite substantial evidence for such a role, it is not applicable to all akinete-forming genera. 12. Heterocysts are now widely believed to be the site of nitrogen fixation in blue-green algae. The main facts in favour of such a role are: (i) fixation of nitrogen by all heterocystous algae, (ii) inhibition of heterocyst formation by combined nitrogen and (iii) direct observations on acetylene reduction by isolated heterocysts. 13. Some non-heterocystous and unicellular algae, and vegetative cells of heterocystous algae fix nitrogen under microaerophilic conditions suggesting that absence of oxygen favours nitrogenase activity. Heterocysts lack the oxygen-evolving photo-system 11, possess oxidative enzymes, and reduce externally supplied tetrazolium salts - all indicating that they are the most suitable sites for harbouring nitrogenase in aerobic conditions. 14. Heterocysts probably originated in the Precambrian in response to the earth's changing environment and seem to be the first example of morphological differentiation in the plant kingdom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号