共查询到20条相似文献,搜索用时 46 毫秒
1.
Replacement of a conserved proline eliminates the absorbance-detected slow folding phase of iso-2-cytochrome c 总被引:3,自引:0,他引:3
As a test of the proline isomerization model, we have used oligonucleotide site-directed mutagenesis to construct a mutant form of iso-2-cytochrome c in which proline-76 is replaced by glycine [Wood, L. C., Muthukrishnan, K., White, T. B., Ramdas, L., & Nall, B. T. (1988) Biochemistry (preceding paper in this issue)]. For the oxidized form of Gly-76 iso-2, an estimate of stability by guanidine hydrochloride induced unfolding indicates that the mutation destabilizes the protein by 1.2 kcal/mol under standard conditions of neutral pH and 20 degrees C (delta G degrees u = 3.8 kcal/mol for normal Pro-76 iso-2 versus 2.6 kcal/mol for Gly-76 iso-2). The kinetics of folding/unfolding have been monitored by fluorescence changes throughout the transition region using stopped-flow mixing. The rates for fast and slow fluorescence-detected refolding are unchanged, while fast unfolding is increased in rate 3-fold in the mutant protein compared to normal iso-2. A new kinetic phase in the 1-s time range is observed in fluorescence-detected unfolding of the mutant protein. The presence of the new phase is correlated with the presence of species with an altered folded conformation in the initial conditions, suggesting assignment of the phase to unfolding of this species. The fluorescence-detected and absorbance-detected slow folding phases have been monitored as a function of final pH by manual mixing between pH 5.5 and 8 (0.3 M guanidine hydrochloride, 20 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
2.
The structural gene CYC7 for yeast iso-2-cytochrome c was previously identified by isolating a mutant, cyc7-1-1, totally lacking iso-2-cytochrome c and demonstrating that revertants of this mutant contained iso-2-cytochrome c with an altered primary structure (Downie et al., 1977). In this paper we describe a variety of different types of mutants that completely or partially lack iso-2-cytochrome c due to mutations in either the structural gene, CYC7, or unlinked “regulatory” genes. The iso-2-cytochrome c-deficient mutants were isolated by benzidine staining of over 3 × 105 colonies from ?? strains (cytoplasmic petites) that lacked iso-1-cytochrome c due to the deletion cyc1-1 and that contain abnormally high levels of iso-2-cytochrome c due to a chromosomal translocation, CYC7-1, adjacent to the normal structural gene CYC7 +. The cytochrome c content of mutants not staining with the benzidine reagents was estimated by low temperature spectroscopy, and 139 mutants containing significantly decreased levels of iso-2-cytochrome c were analyzed genetically by complementation with previously identified cyc mutants. In this way 50 mutants at the cyc2 and cyc3 loci were identified along with a group of 62 mutants of the structural gene cyc7. The different types of mutants of the structural gene which were uncovered and which were more or less anticipated included those that completely lacked iso-2-cytochrome c, those that were suppressible by UAA or UAG suppressors, those that lacked iso-2-cytochrome c but had increased levels after growth at lower temperatures, and those that exhibited visibly altered ca absorption bands of iso-2-cytochrome c. Iso-2-cytochrome c mutants with altered primary structures were obtained from intragenic revertants of several of these mutants, confirming our earlier conclusion that cyc7 is the structural gene. In addition we observed an unexpected class of mutants that lacked iso-2-cytochrome c when in the ?? state but contained approximately the CYC7-1 parental level when in the ?+ state. Two of these mutants, cyc7-1-47 and cyc7-1-49, were shown to contain altered iso-2-cytochromes c. The different contents of the abnormal iso-2cytochromes c suggest that cytochrome c has different environments in ?+ and ?? mitochondria and that the ?+ condition may stabilize certain altered proteins. 相似文献
3.
Structural gene for yeast iso-2-cytochrome c. 总被引:14,自引:0,他引:14
J A Downie J W Stewart N Brockman A M Schweingruber F Sherman 《Journal of molecular biology》1977,113(2):369-384
Protein analysis and genetic studies have led to the identification of the structural genes of iso-1-cytochrome c and iso-2-cytochrome c, which constitute, respectively, 95% and 5% of the total amount of cytochrome c in the yeast Saccharomyces cerevisiae. The structural gene CYC1 for iso-1-cytochrome c was previously identified by Sherman et al. (1966) and the structural gene CYC7 for iso-2-cytochrome c is identified in this investigation. A series of the following mutations were selected by appropriate procedures and shown by genetic tests to be allelic: CYC7+ →CYC7-1 →cyc7-1-1 →CYC7-1-1-A, etc., where CYC7 + denotes the wild-type allele determining iso-2-cytochrome c; CYC7-1 denotes a dominant mutant allele causing an approximately 30-fold increase of iso-2-cytochrome c with a normal sequence, and was used as an aid in selecting deficient mutants; cyc7-1-1 denotes a recessive mutant allele causing complete deficiency of iso-2-cytochrome c; and CYC7-1-1-A denotes an intragenic revertant having an altered iso-2-cytochrome c at the same level as iso-2-cytochrome c in the CYC7-1 strains. The suppression of cyc7-1-1 with the known amber suppressor SUP7-a indicated that the defect in cyc7-1-1 was an amber (UAG) nonsense codon. Sequencing revealed a single amino acid replacement of a tyrosine residue for the normal glutamine residue at position 24 in iso-2-cytochrome c from the suppressed cyc7-1-1 strain and also in five revertants of cyc7-1-1, of which three were due to extragenic suppression and two to intragenic reversion. The nature of the mutation that elevated the level of normal iso-2-cytochrome c in the CYC7-1 strain was not identified, although it occurred at or very near the CYC7 locus but outside the translated portion of the gene and it may be associated with a chromosomal aberration. Genetic studies demonstrated that CYC7 is not linked to CYC1, the structural gene for iso-1-cytochrome c. 相似文献
4.
We report the application of our newly developed dielectric resonator-based flow and stopped-flow kinetic EPR systematically to probe protein folding in yeast iso-1-cytochrome c at cysteine-directed spin-labeled locations. The locations studied have not been previously directly probed by other techniques, and we observe them on a time scale stretching from 50 micros to seconds. On the basis of crystal structure and homology information, the following mutation-tolerant, externally located cysteine labeling sites were chosen (in helices, T8C, E66C, and N92C; in loops, E21C, V28C, H39C, D50C, and K79C), and labeling at these sites was not destabilizing. Dilution of denaturant was used to induce folding and thereby to cause a change in the spin label EPR signal as folding altered the motion of the spin label. Under folding conditions, including the presence of imidazole to eliminate kinetic trapping due to heme misligation, a phase of folding on the 20-30 ms time scale was found. This phase occurred not only at the T8C and N92C labeling sites in the N- and C-terminal helices, where such a phase has been associated with folding in these helices, but overall at labeling sites throughout the protein. In the absence of imidazole the 20-30 ms phase disappeared, and another phase having the time scale of 1 s appeared throughout the protein. There was evidence under all conditions for a burst phase on a scale of less than several milliseconds which occurred at labeling positions V28C, H39C, D50C, E66C, and K79C in the middle of the protein sequence. At spin-labeled D50C rapid-mix flow EPR indicated a very short approximately 50 micros phase possibly associated with the prefolding or compaction of the loop to which D50 belongs. Spin labels have been criticized as perturbing the phenomena which they measure, but our spin labeling strategy has reported common kinetic themes and not perturbed, disconnected kinetic events. 相似文献
5.
Characterization of yeast iso-1-cytochrome c mRNA 总被引:7,自引:0,他引:7
The iso-1-cytochrome c mRNA has been identified by hybridization of a 32P probe prepared from a plasmid containing the iso-1-cytochrome c gene to RNA size-fractionated on agarose gels and transferred to paper. A hybridization band was visible with RNA prepared from wild type cells, but not with RNA prepared from an iso-1-cytochrome c deletion mutant. RNA prepared from cells containing a nonsense mutation in the iso-1-cytochrome c gene showed reduced levels of hybridization. The RNA that hybridized to the probe was 700 +/- 50 nucleotides in length and was polyadenylated. The cellular levels of this RNA were repressed by glucose, and this repression was achieved within 5 min after glucose addition to a derepressed culture. No precursors of this RNA were detected in wild type cells or in an RNA1 mutant, temperature-sensitive for RNA metabolism. The length of the 3' noncoding region of this RNA was determined to be 200 +/- 25 nucleotides (excluding the poly(A) tail) and the 5' noncoding region was estimated to be about 120 nucleotides in length. 相似文献
6.
An extensive deletion causing overproduction of yeast iso-2-cytochrome c 总被引:27,自引:0,他引:27
CYC7-H3 is a cis-dominant regulatory mutation that causes a 20-fold overproduction of yeast iso-2-cytochrome c. The CYC7-H3 mutation is an approximately 5 kb deletion with one breakpoint located in the 5' noncoding region of the CYC7 gene, approximately 200 base from the ATG initiation codon. The deletion apparently fuses a new regulatory region to the structural portion of the CYC7 locus. The CYC7-H3 deletion encompasses the RAD23 locus, which controls UV sensitivity and the ANP1 locus, which controls osmotic sensitivity. The gene cluster CYC7-RAD23-ANP1 displays striking similarity to the gene cluster CYC1-OSM1-RAD7, which controls, respectively, iso-1-cytochrome c, osmotic sensitivity and UV sensitivity. We suggest that these gene clusters are related by an ancient transpositional event. 相似文献
7.
Five chromosomal genes, CYPI to CYP5 involved in the regulation of the synthesis of iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2 are described. The function of these genes was studied either by varying the proportion of the mutated and wild type alleles in the cell vy varing the growth conditions, or else by transforming the mutants into sigma-cytoplasmic petites. We have shown a network of genetic interactions which regulate the synthesis of three structurally different proteins : iso-1-cytochrome c, iso-2-cytochrome c and cytochrome b2, by two unlinked genes : CYC1 and CYP1, one of which (CYC1) is the structural gene by iso-1-cytochrome c. Within this network the interactions are proportional to the gene dosage and are either antagonistic or synergistic depending on the allele combination and the protein studied. The mutated alleles cyp1 stimulate the synthesis of iso-2-cytochrome c, inhibit the synthesis of iso-1-cytochrome c, while the cytochrome b2 synthesis is also inhibited but by a combination of cyp1 mutated alleles CYC1 wild type allele. Other loci, CYP2, CYP3, CYP4 and CYP5 were also studied in various allelic combinations. They show some interactions between them or with CYC1 locus but these interactions are different and less pronounced than those involving loci CYP1 and CYC1. 相似文献
8.
Physicochemical properties of bakers' yeast iso-1-cytochrome c 总被引:2,自引:0,他引:2
9.
Sequence of the yeast iso-1-cytochrome c mRNA 总被引:8,自引:0,他引:8
The nucleotide sequence of the yeast iso-1-cytochrome c (CYC1) mRNA is presented. The mRNA was enriched by hybridization to cloned CYC1 DNA attached to a solid matrix: either nitrocellulose filters or diazobenzyloxymethyl cellulose powder. The sequence of the 5'-end of the mRNA was determined by the extension of a CYC1-specific dodecanucleotide primer; the sequence of the 3'-end was determined using a decanucleotide d(pT8-G-A) primer. The CYC1 mRNA begins 61 nucleotides 5' to the AUG initiation codon, extends through the coding sequence to 172 to 175 nucleotides 3' to the UAA termination codon, followed by the poly(A) tail. There are no intervening sequences. Some of the sequences that the CYC1 mRNA shares in common with other eukaryotic mRNAs are discussed. 相似文献
10.
Isotope-edited nuclear magnetic resonance spectroscopy is used to monitor ring flip motion of the five tyrosine side chains in the oxidized and reduced forms of yeast iso-2-cytochrome c. With specifically labeled protein purified from yeast grown on media containing [3,5-13C]tyrosine, isotope-edited one-dimensional proton spectra have been collected over a 5-55 degrees C temperature range. The spectra allow selective observation of the 10 3,5 tyrosine ring proton resonances and, using a two-site exchange model, allow estimation of the temperature dependence of ring flip rates from motion-induced changes in proton line shapes. For the reduced protein, tyrosines II and IV are in fast exchange throughout the temperature range investigated, or lack resolvable differences in static chemical shifts for the 3,5 ring protons. Tyrosines I, III, and V are in slow exchange at low temperatures and in fast exchange at high temperatures. Spectral simulations give flip rates for individual tyrosines in a range of one flip per second at low temperatures to thousands of flips per second at high temperatures. Eyring plots show that two of the tyrosines (I and III) have essentially the same activation parameters: delta H++ = 28 kcal/mol for both I and III; delta S++ = 42 cal/(mol.K) for I, and delta S++ = 41 cal/(mol.K) for III. The remaining tyrosine (V) has a larger enthalpy and entropy of activation: delta H++ - 36 kcal/mol, delta S++ = 72 cal/(mol.K). Tentative sequence-specific assignments for the tyrosines in reduced iso-2 are suggested by comparison to horse cytochrome c.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
11.
A hair seeding technique has been developed to obtain diffraction quality crystals of yeast (Saccharomyces cerevisiae) iso-2-cytochrome c, a model for studies of protein folding and biological electron transfer reactions. Deep red crystals of this protein were obtained from 88 to 92% saturated solutions of ammonium sulfate containing 20 mg protein/ml, 0.1 M-sodium phoshate, 0.3 M-sodium chloride, 0.04 M-dithiothreitol and adjusted to phosphate, 0.3 M-sodium chloride, 0.04 M-dithiothreitol and adjusted to pH 6.0. Rapid crystal growth was observed, but only along the path of the seeding hair stroke. The space group is P4(3)2(1)2 (or P4(1)2(1)2) with a = b = 36.4 A, c = 137.8 A (1 A = 0.1 nm) and Z = 8. Crystals are stable in the X-ray beam for more than 10 days and diffract to at least 2.5 A resolution. The same hair seeding methodology has proven useful in obtaining crystals of specifically designed mutant iso-2 proteins and in other protein systems where consistent crystal growth had previously proven difficult to attain. 相似文献
12.
Structural intermediates in folding of yeast iso-2 cytochrome c 总被引:6,自引:0,他引:6
B T Nall 《Biochemistry》1983,22(6):1423-1429
The kinetic properties of the folding reactions of iso-2 cytochrome c from Saccharomyces cerevisiae have been investigated by stopped-flow and temperature-jump methods. Three different structural probes are compared: (1) absorbance changes in the visible reflecting changes in heme environment, (2) ultraviolet absorbance changes due to the exposure of aromatic groups to solvent, and (3) tryptophan fluorescence attributable principally to the average distance between the tryptophan residue (donor) and the heme (quencher). In addition, two probes either indicative of or correlated with function, ascorbic acid reducibility and the 695-nm absorbance band, have been used to monitor specifically the rate of formation of the native protein on refolding. The fastest phase observed (tau 3) has a measurable relative amplitude only when monitored by visible absorbance changes, suggesting that this reaction involves changes in heme environment in the absence of significant changes in the heme to tryptophan distance or in the extent to which aromatic groups are exposed to solvent. Different slow phases are observed when complete refolding is monitored by visible or ultraviolet absorbance (tau 1a) as opposed to tryptophan fluorescence (tau 1b), the fluorescence changes being complete on a time scale 4-8-fold faster than for absorbance. A mid-range kinetic phase (tau 2) is detected by all three structural probes. When ascorbic acid reducibility or 695-nm absorbance changes are used to monitor the rate of formation of the native protein, two phases are detected: tau 2 and tau 1a. Taken together these results demonstrate that kinetic phase tau 1b results in the formation of a structural intermediate in folding with fluorescence close to that of the native protein but with distinct absorbance properties. 相似文献
13.
Isothermal titration calorimetry was used to study the formation of 19 complexes involving yeast iso-1-ferricytochrome c (Cc) and ferricytochrome c peroxidase (CcP). The complexes comprised combinations of the wild-type proteins, six CcP variants, and three Cc variants. Sixteen protein combinations were designed to probe the crystallographically defined interface between Cc and CcP. The data show that the high-affinity sites on Cc and CcP coincide with the crystallographically defined sites. Changing charged residues to alanine increases the enthalpy of complex formation by a constant amount, but the decrease in stability depends on the location of the amino acid substitution. Deleting methyl groups has a small effect on the binding enthalpy and a larger deleterious effect on the binding free energy, consistent with model studies of the hydrophobic effect, and showing that nonpolar interactions also stabilize the complex. Double-mutant cycles were used to determine the coupling energies for nine Cc-CcP residue pairs. Comparing these energies to the crystal structure of the complex leads to the conclusion that many of the substitutions induce a rearrangement of the complex. 相似文献
14.
We describe the use of classical and molecular genetic techniques to investigate the folding, stability, and enzymatic requirements of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. Interpretation of the defects associated with an extensive series of altered forms of iso-1-cytochrome c was facilitated by the recently resolved three dimensional structure of iso-1-cytochrome c [(1987) J. Mol. Biol. 199, 295-314], and by comparison with the phylogenetic series of eukaryotic cytochromes c. Residue replacements that abolish iso-1-cytochrome c function appear to do so by affecting either heme attachment or protein stability; no replacements that abolish electron transfer function without affecting protein structure were uncovered. Most nonfunctional forms retained at least partial covalent attachment to the heme moiety; heme attachment was abolished only by replacements of Cys19 and Cys22, which are required for thioether linkage, and His23, a heme ligand. Replacements were uncovered that retain function at varying levels, including replacements at evolutionarily conserved positions, some of which were structurally and functionally indistinguishable from wild type iso-1-cytochrome c. 相似文献
15.
16.
The effect of pH on the denatured state (3 M guanidine hydrochloride) was evaluated with fluorescence spectroscopy for four variants of iso-1-cytochrome c, AcTM (no surface histidines), AcH26 (surface histidine at position 26), AcH54 (surface histidine at position 54), and AcH54I52 (stabilizing I52 mutation added to AcH54). Changes in the compactness and the heme ligation of the denatured state, as a function of pH, were monitored through changes in Trp 59-heme fluorescence quenching. With the AcTM and AcH26 variants, no change in the fluorescence intensity occurs from pH 4 to 10. However, for the AcH54 and AcH54I52 variants the fluorescence intensity drops significantly between pH 4 and 6, consistent with His 54 binding to the heme of cytochrome c. Between pH 8 and 10 fluorescence intensity increases again, indicating that the His 54 is displaced from the heme. The data are consistent with lysines 4 and 5 being the primary heme ligands at alkaline pH, under denaturing conditions. This conclusion was confirmed by site-directed mutagenesis. Thermodynamic analysis indicates that heme-ligand affinity in the denatured state is controlled primarily by sequence position (loop size) and that when histidines are present they inhibit lysine ligation until approximately pH 8.5-9.0 as compared to pH 7.5 with the AcTM variant. Thus, at physiological pH, histidine ligands provide the primary constraint on the denatured state of cytochrome c. The heme-Trp 59 distance in the denatured state of iso-1-cytochrome c, derived from analysis by F?rster energy transfer theory, is approximately 26 A at pH 4 and 10, much shorter than the random coil prediction of 56 A. Surprisingly, the heme-Trp 59 distance in the His 54 bound conformation only drops to approximately 21 A, consistent with an extended conformation for the short polypeptide segment separating heme and Trp 59. 相似文献
17.
Substitutions of proline 76 in yeast iso-1-cytochrome c. Analysis of residues compatible and incompatible with folding requirements 总被引:3,自引:0,他引:3
J F Ernst D M Hampsey J W Stewart S Rackovsky D Goldstein F Sherman 《The Journal of biological chemistry》1985,260(24):13225-13236
Fine-structure genetic mapping previously revealed numerous nonfunctional cyc1 mutations having alterations at or near the site corresponding to amino acid position 76 of iso-1-cytochrome c from the yeast Saccharomyces cerevisiae. DNA sequencing of the alterations in four of these cyc1 mutations indicated that the normal Pro-76 was replaced by Leu-76. Revertants containing at least partially functional iso-1-cytochromes c were isolated, and the alterations were analyzed by DNA sequencing and protein analysis. Specific activities of the altered iso-1-cytochromes c were estimated in vivo by growth of the strains in lactate medium; compared to normal iso-1-cytochrome c with Pro-76, the following activities were associated with the following replacements: approximately 90% for Val-76, approximately 60% for Thr-76, approximately 30% for Ser-76, approximately 20% for Ile-76, and 0% for Leu-76. In order to develop an understanding of the factors that determine whether or not an altered iso-1-cytochrome c will function, we undertook a theoretical analysis which led to the conclusion that the activity of the proteins was dependent on both short- and long-range interactions. Short-range interactions were estimated from studies on known protein structures which gave the likelihood that various amino acids would be found in a local backbone configuration similar to the native protein; long-range interactions with the rest of the molecule were analyzed by considering the size of the side chain. We believe this approach can be used to analyze a wide variety of mutant proteins. 相似文献
18.
The changes in the free energy of the denatured state of a set of yeast iso-1-cytochrome c variants with single surface histidine residues have been measured in 3 M guanidine hydrochloride. The thermodynamics of unfolding by guanidine hydrochloride is also reported. All variants have decreased stability relative to the wild-type protein. The free energy of the denatured state was determined in 3 M guanidine hydrochloride by evaluating the strength of heme-histidine ligation through determination of the pK(a) for loss of histidine binding to the heme. The data are corrected for the presence of the N-terminal amino group which also ligates to the heme under similar solution conditions. Significant deviations from random coil behavior are observed. Relative to a variant with a single histidine at position 26, residual structure of the order of -1.0 to -2.5 kcal/mol is seen for the other variants studied. The data explain the slower folding of yeast iso-1-cytochrome c relative to the horse protein. The greater number of histidines and the greater strength of ligation are expected to slow conversion of the histidine-misligated forms to the obligatory aquo-heme intermediate during the ligand exchange phase of folding. The particularly strong association of histidine residues at positions 54 and 89 may indicate regions of the protein with strong energetic propensities to collapse against the heme during early folding events, consistent with available data in the literature on early folding events for cytochrome c. 相似文献
19.
Replacement of a conserved proline and the alkaline conformational change in iso-2-cytochrome c 总被引:1,自引:0,他引:1
Although point mutations usually lead to minor localized changes in protein structure, replacement of conserved Pro-76 with Gly in iso-2-cytochrome c induces a major conformational change. The change in structure results from mutation-induced depression of the pK for transition to an alkaline conformation with altered heme ligation. To assess the importance of position 76 in stabilizing the native versus the alkaline structure, the equilibrium and kinetic properties of the pH-induced conformational change have been compared for normal and mutant iso-2-cytochrome c. The pKapp for the conformational change is reduced from 8.45 (normal iso-2) to 6.71 in the mutant protein (Gly-76 iso-2), suggesting that conservation of Pro-76 may be required to stabilize the native conformation at physiological pH. The kinetics of the conformational change for both the normal and mutant proteins are well-described by a single kinetic phase throughout most of the pH-induced transition zone. Over this pH range, a minimal mechanism proposed for horse cytochrome c [Davis, L. A., Schejter, A., & Hess, G. P. (1974) J. Biol. Chem. 249, 2624-2632] is consistent with the data for normal and mutant yeast iso-2-cytochromes c: NH KH----N + H+ kcf in equilibrium kcb A NH and N are native forms of cytochrome c with a 695-nm absorbance band, A is an alkaline form that lacks the 695-nm band, KH is a proton dissociation constant, and kcf and kcb are microscopic rate constants for the conformational change. The Gly-76 mutation increases kcf by almost 70-fold, but kcb and KH are unchanged.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
20.
Mutagenic specificity: reversion of iso-1-cytochrome c mutants of yeast 总被引:19,自引:0,他引:19
In previous studies the nucleotide sequences of numerous mutant codons in the cy1 gene have been identified from altered iso-1-cytochromes c. These studies not only revealed the mutant codons that caused the deficiencies but also experimentally determined which of the base pair changes allowed the formation of functional iso-1-cytochromes c. In this investigation we have quantitatively measured the reversion frequencies of eleven cy1 mutants which were treated with 12 mutagens. The cy1 mutants comprised nine mutants having single-base changes of the AUG initiation codon (Stewart et al., 1971), an ochre mutant cy1–9 (Stewart et al., 1972), and an amber mutant cy1–179 (Stewart &; Sherman, 1972). In some cases the types of induced base changes could be inferred unambiguously from the pattern of reversion. Selective G.C to A.T transitions were induced by ethyl methanesulfonate, diethyl sulfate, N-methyl-N′-nitro-N-nitrosoguanidine, 1-nitrosoimidazolidone-2, nitrous acid, [5-3H]uridine and β-propiolactone. There was no apparent specificity with methyl methanesulfonate, dimethyl sulfate, nitrogen mustard and γ-rays. Ultraviolet light induced high rates of reversion of the ochre and amber mutants, but in these instances it appears as if the selective action is due to particular nucleotide sequences and not due to simple types of base pair changes. 相似文献