首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TTA codon, one of the six available codons for the amino acid leucine, is the rarest codon among the high GC genomes of Actinobacteria including Frankia. This codon has been implicated in various regulatory mechanisms involving secondary metabolism and morphological development. TTA-mediated gene regulation is well documented in Streptomyces coelicolor, but that role has not been investigated in other Actinobacteria including Frankia. Among the various Actinomycetes with a GC content of more than 70%, Frankia genomes had the highest percentages of TTA-containing genes ranging from 5.2 to 10.68% of the genome. In contrast, TTA-bearing genes comprised 1.7, 3.4 and 4.1% of the Streptomyces coelicolor, S. avermitilis and Nocardia farcinia genomes, respectively. We analyzed their functional role, evolutionary significance, horizontal acquisition and the codon-anticodon interaction. The TTA-bearing genes were found to be well represented in metabolic genes involved in amino acid transport and secondary metabolism. A reciprocal Blast search reveal that many of the TTA-bearing genes have orthologs in the other Frankia genomes, and some of these orthologous genes also have a TTA codon in them. The gene expression level of TTA-containing genes was estimated by the use of the codon adaption index (CAI), and the CAI values were found to have a positive correlation with the GC3 (GC content at the 3rd codon position). A full-atomic 3D model of the leucine tRNA recognizing the TTA (UUA) codon was generated and utilized for in silico docking to determine binding affinity in codon-anticodon interaction. We found a proficient codon-anticodon interaction for this codon which is perhaps why so many genes hold on to this rare codon without compromising their translational efficiency.  相似文献   

2.
3.
4.
Streptomycetes, Gram-positive bacteria with huge and GC-rich genomes provide an ample example of codon usage bias taken to the extreme. Particularly, in all sequenced to date streptomycete genomes leucyl codon TTA is the rarest one. It is present (usually once or twice) in 70–200 out of 7000–8000 coding sequences that make up a typical streptomycete genome. tRNALeuUAA of streptomycetes, encoded by the bldA gene, has been shown to be present in mature form only after the onset of morphological differentiation and activation of secondary metabolism. Consequently, during the early stages of cell growth, the translation of genes carrying the TTA codon can be interrupted due to the absence of tRNALeuUAA. Several reports show that mutations of TTA to synonymous codons in certain genes indeed relieve their expression from bldA dependence. However, the deletion of bldA does not always arrest the expression of TTA-containing genes. The nucleotides T/C downstream of TTA were suggested, in 2002, to favor TTA mistranslation. We tested this hypothesis using sizable datasets derived from individual Streptomyces genome and a subset of TTA+ genes for secondary metabolism known for their active expression. Our results revealed nucleotide biases downstream of NNA codons family, such as the preference for C and the avoidance of A. Yet, none of the observed biases was sufficient to claim a special case for TTA codon. Hence, the issue of codon context and TTA codon mistranslation in Streptomyces deserves further elaboration.Electronic supplementary materialThe online version of this article (10.1007/s12088-020-00902-6) contains supplementary material, which is available to authorized users.  相似文献   

5.
Previous studies have shown that one of the six leucine codons, UUA, is rare in Streptomyces, and that, while the gene for the UUA-specific tRNA, bldA, can generally be inactivated in diverse streptomycetes without impairing vegetative growth, bldA mutants are typically defective in reproductive aerial growth and in antibiotic production. Here, four complete genome sequences and 143 gene clusters for antibiotic biosynthesis from diverse streptomycetes were analysed in order to evaluate the evolution and function of genes whose possession of TTA codons makes them dependent on bldA. It was deduced that the last common ancestor of the four sequenced genomes, possibly 220 million years ago, already possessed the bldA system, together with perhaps 200 TTA-containing target genes. Some 33 of these genes are retained by the modern descendants, though only three of them retain a TTA in all occurrences. Nearly all of these 33, as well as many of the TTA-containing genes with orthologues in two or three of the four genomes, have the same location on the chromosomes as in their common ancestor. However, the majority of TTA-containing genes (61% overall in the four genomes) are species-specific, and were probably acquired by comparatively recent horizontal gene transfer. Most of these genes are of unknown function, and it is likely that many of them confer specialised ecological benefits. On the other hand, one class of species-specific, functionally recognisable, horizontally acquired genes--the gene clusters for antibiotic production--very often contain TTA codons; and nearly half of them have TTA codons in their pathway-specific regulatory genes.  相似文献   

6.
7.
The use of a rare codon specifically during development?   总被引:15,自引:5,他引:10  
A range of circumstantial evidence suggests that in Streptomyces spp., genes required for vegetative growth do not contain the leucine codon TTA. Instead, the codon seems to be confined to a few genes necessary during differentiation, when the colonies begin to produce aerial hyphae and antibiotics. Thus, mutations in bldA, the structural gene for tRNATTALeu, do not retard vegetative growth, but they prevent normal aerial mycelium and antibiotic production. Most of the known TTA-containing genes specify regulatory or resistance proteins associated with antibiotic-production clusters. Possibly the ability to translate the UUA codons in mRNA from such genes is confined to late stages of colony development. Factors that might have contributed to the evolution of this unusual situation are discussed.  相似文献   

8.
The sequencing of the entire genetic complement of Streptomyces coelicolor A3(2) has been completed with the determination of the 365,023 bp sequence of the linear plasmid SCP1. Remarkably, the functional distribution of SCP1 genes somewhat resembles that of the chromosome: predicted gene products/functions include ECF sigma factors, antibiotic biosynthesis, a gamma-butyrolactone signalling system, members of the actinomycete-specific Wbl class of regulatory proteins and 14 secreted proteins. Some of these genes are among the 18 that contain a TTA codon, making them targets for the developmentally important tRNA encoded by the bldA gene. RNA analysis and gene fusions showed that one of the TTA-containing genes is part of a large bldA-dependent operon, the gene products of which include three proteins isolated from the spore surface by detergent washing (SapC, D and E), and several probable metabolic enzymes. SCP1 shows much evidence of recombinational interactions with other replicons and transposable elements during its history. For example, it has two sets of partitioning genes (which may explain why an integrated copy of SCP1 partially suppressed the defective partitioning of a parAB-deleted chromosome during sporulation). SCP1 carries a cluster of probable transfer determinants and genes encoding likely DNA polymerase III subunits, but it lacks an obvious candidate gene for the terminal protein associated with its ends. This may be related to atypical features of its end sequences.  相似文献   

9.
The extracellular proteome of Streptomyces coelicolor grown in a liquid medium was analyzed by using two-dimensional gel electrophoresis and matrix-assisted laser desorption ionization-time of flight peptide mass fingerprint analysis. Culture supernatants became protein rich only after rapid growth had been completed, supporting the idea that protein secretion is largely a stationary phase phenomenon. Out of about 600 protein spots observed, 72 were characterized. The products of 47 genes were identified, with only 11 examples predicted to be secreted proteins. Mutation in bldA, previously known to impair the stationary phase processes of antibiotic production and morphological differentiation, also induced changes in the extracellular proteome, revealing even greater pleiotropy in the bldA phenotype than previously known. Four proteins increased in abundance in the bldA mutant, while the products of 11 genes, including four secreted proteins, were severely down-regulated. Although bldA encodes the only tRNA capable of efficiently translating the rare UUA (leucine) codon, none of the latter group of genes contains an in-frame TTA. SCO0762, a serine-protease inhibitor belonging to the Streptomyces subtilisin inhibitor family implicated in differentiation in other streptomycetes, was completely absent from the bldA mutant. This dependence was shown to be mediated via the TTA-containing regulatory gene adpA, also known as bldH, a developmental gene that is responsible for the effects of bldA on differentiation. Mutation of the SCO0762 gene abolished detectable trypsin-protease inhibitory activity but did not result in any obvious morphological defects.  相似文献   

10.
11.
12.
Codon usage in the G+C-rich Streptomyces genome.   总被引:45,自引:0,他引:45  
F Wright  M J Bibb 《Gene》1992,113(1):55-65
The codon usage (CU) patterns of 64 genes from the Gram+ prokaryotic genus Streptomyces were analysed. Despite the extremely high overall G+C content of the Streptomyces genome (estimated at 0.74), individual genes varied in G+C content from 0.610 to 0.797, and had third codon position G+C contents (GC3s) that varied from 0.764 to 0.983. The variation in GC3s explains a significant proportion of the variation in CU patterns. This is consistent with an evolutionary model of the Streptomyces genome where biased mutation pressure has led to a high average G+C content with random variation about the mean, although the variation observed is greater than that expected from a simple binomial model. The only gene in the sample that can be confidently predicted to be highly expressed, EF-Tu of Streptomyces coelicolor A3(2) (GC3s = 0.927), shows a preference for a third position C in several of the four codon families, and for CGY and GGY for Arg and Gly codons, respectively (Y = pyrimidine); similar CU patterns are found in highly expressed genes of the G+C-rich Micrococcus luteus genome. It thus appears that codon usage in Streptomyces is determined predominantly by mutation bias, with weak translational selection operating only in highly expressed genes. We discuss the possible consequences of the extreme codon bias of Streptomyces and consider how it may have evolved. A set of CU tables is provided for use with computer programs that locate protein-coding regions.  相似文献   

13.
We have determined the genome sequence of 8.7 Mb chromosome of Streptomyces peucetius ATCC 27952, which produces clinically important anthracycline chemotherapeutic agents of the polyketide class of antibiotics, daunorubicin and doxorubicin. The cytochrome P450 (CYP) superfamily is represented by 19 sequences in the S. peucetius. Among those, 15 code for functional genes, whereas the remaining four are pseudo genes. CYPs from S. peucetius are phylogenetically close to those of Streptomyces amermitilis. Four CYPs are associated with modular PKS of avermectin and two with doxorubicin biosynthetic gene cluster. CYP252A1 is the new family found in S. peucetius, which shares 38% identity to CYP51 from Streptomyces coelicolor A3 (2). Nine CYPs from S. peucetius are found in the cluster containing various regulatory genes including rar operon, conserved in S. coelicolor A3 (2) and Streptomyces griseus. Although two ferredoxins and four ferredoxin reductases have been identified so far, only one ferredoxin reductase was found in the cluster of CYP147F1 in S. peucetius. To date, 174 CYPs have been described from 45 Streptomyces species in all searchable databases. However, only 18 CYPs are clustered with ferredoxin. The comparative study of cytochrome P450s, ferredoxins, and ferredoxin reductases should be useful for the future development and manipulation of antibiotic biosynthetic pathways.  相似文献   

14.
Li YD  Li YQ  Chen JS  Dong HJ  Guan WJ  Zhou H 《Bio Systems》2006,85(3):225-230
Non-optimal (rare) codons have been suggested to reduce translation rate and facilitate secretion in Escherichia coli. In this study, the complete genome analysis of non-optimal codon usage in secretory signal sequences and non-secretory sequences of Streptomyces coelicolor was performed. The result showed that there was a higher proportion of non-optimal codons in secretory signal sequences than in non-secretory sequences. The increased tendency was more obvious when tested with the experimental data of secretory proteins from proteomics analysis. Some non-optimal codons for Arg (AGA, CGU and CGA), Ile (AUA) and Lys (AAA) were significantly over presented in the secretary signal sequences. It may reveal that a balanced non-optimal codon usage was necessary for protein secretion and expression in Streptomyces.  相似文献   

15.
The cytochrome P450 monooxygenase Ema1 from Streptomyces tubercidicus R-922 and its homologs from closely related Streptomyces strains are able to catalyze the regioselective oxidation of avermectin into 4"-oxo-avermectin, a key intermediate in the manufacture of the agriculturally important insecticide emamectin benzoate (V. Jungmann, I. Molnár, P. E. Hammer, D. S. Hill, R. Zirkle, T. G. Buckel, D. Buckel, J. M. Ligon, and J. P. Pachlatko, Appl. Environ. Microbiol. 71:6968-6976, 2005). The gene for Ema1 has been expressed in Streptomyces lividans, Streptomyces avermitilis, and solvent-tolerant Pseudomonas putida strains using different promoters and vectors to provide biocatalytically competent cells. Replacing the extremely rare TTA codon with the more frequent CTG codon to encode Leu4 in Ema1 increased the biocatalytic activities of S. lividans strains producing this enzyme. Ferredoxins and ferredoxin reductases were also cloned from Streptomyces coelicolor and biocatalytic Streptomyces strains and tested in ema1 coexpression systems to optimize the electron transport towards Ema1.  相似文献   

16.
【背景】链霉菌属于放线菌科,在土壤环境中广泛分布。链霉菌具有复杂的形态分化和多样性的次生代谢网络,能产生大量具有生物活性的次级代谢产物,被广泛深入研究。【目的】天蓝色链霉菌是链霉菌的模式菌株,其脂肪酸合成代谢与次级代谢联系紧密,但目前脂肪酸合成代谢途径还不清楚,其长链3-酮脂酰ACP合成酶还未见报道。【方法】利用大肠杆菌FabF序列进行同源比对,发现天蓝色链霉菌A3(2)的基因组中,SCO2390(ScoFabF1)、SCO1266(ScoFabF2)、SCO0548(ScoFabF3)和SCO5886 (ScoRedR)具有较高的相似性,并具有保守的Cys-His-His催化活性中心,可能具有长链3-酮脂酰ACP合成酶活性。采用PCR扩增方法分别获得以上基因,连入表达载体pBAD24M后分别互补大肠杆菌fabB(ts)突变株和fabB(ts)fabF双突变株,并检测转化子的生长情况。以上基因与pET-28b连接后,在大肠杆菌BL21(DE3)中表达,并利用Ni-NTA纯化获得蛋白,体外测定其催化活性。将以上基因分别互补大肠杆菌fabF突变株后,GC-MS测定互补株的脂肪酸组成。【结果】4个同源基因中,只有ScofabF1能恢复fabB(ts)fabF双突变株42°C时在添加油酸条件下的生长,其他3个基因均不能恢复生长。而这4个基因都不能恢复fabB(ts)突变株42°C时生长。体外活性测定ScoFabF1具有长链3-酮脂酰ACP合成酶活性,其他3个蛋白都不具有该活性。仅ScofabF1能显著提高大肠杆菌fabF突变株的顺-11-十八碳烯酸(C18:1)比例,其他3个基因都不具有该功能。【结论】天蓝色链霉菌中ScofabF1编码长链3-酮脂酰ACP合成酶II,在脂肪酸利用过程中发挥重要作用。天蓝色链霉菌中没有发现编码长链3-酮脂酰ACP合成酶I的基因,其可能通过其他途径合成少量的不饱和脂肪酸。以上研究结果为进一步研究天蓝色链霉菌中脂肪酸合成机制奠定了基础。  相似文献   

17.
18.
Codon usage bias refers to the phenomenon where specific codons are used more often than other synonymous codons during translation of genes, the extent of which varies within and among species. Molecular evolutionary investigations suggest that codon bias is manifested as a result of balance between mutational and translational selection of such genes and that this phenomenon is widespread across species and may contribute to genome evolution in a significant manner. With the advent of whole‐genome sequencing of numerous species, both prokaryotes and eukaryotes, genome‐wide patterns of codon bias are emerging in different organisms. Various factors such as expression level, GC content, recombination rates, RNA stability, codon position, gene length and others (including environmental stress and population size) can influence codon usage bias within and among species. Moreover, there has been a continuous quest towards developing new concepts and tools to measure the extent of codon usage bias of genes. In this review, we outline the fundamental concepts of evolution of the genetic code, discuss various factors that may influence biased usage of synonymous codons and then outline different principles and methods of measurement of codon usage bias. Finally, we discuss selected studies performed using whole‐genome sequences of different insect species to show how codon bias patterns vary within and among genomes. We conclude with generalized remarks on specific emerging aspects of codon bias studies and highlight the recent explosion of genome‐sequencing efforts on arthropods (such as twelve Drosophila species, species of ants, honeybee, Nasonia and Anopheles mosquitoes as well as the recent launch of a genome‐sequencing project involving 5000 insects and other arthropods) that may help us to understand better the evolution of codon bias and its biological significance.  相似文献   

19.
DNA/DNA genome microarray analysis together with genome sequencing suggests that the genome of members of the genus Streptomyces would seem to have a common structure including a linear genomic structure, a core of common syntenous Actinomycete genes, the presence of species specific terminal regions and two intermediate group of syntenous genes that seem to be genus specific. We analyzed Streptomyces species using DNA/DNA microarray comparative genome analysis. Only Streptomyces rimosus failed to give a congruent genome pattern for the genes found in Streptomyces coelicolor. We expanded the analysis to include a number of strains related to the type strain of S. rimosus and obtained a similar divergence from the main body of Streptomyces species. These strains showed very close identity to the original strain with no gene deletion or duplication detected. The 16S rRNA sequences of these S. rimosus strains were confirmed as very similar to the S. rimosus sequences available from the Ribosomal Database Project. When the SSU ribosomal RNA phylogeny of S. rimosus is analyzed, the species is positioned at the edge of the Streptomyces clade. We conclude that S. rimosus represents a distinct evolutionary lineage making the species a worthy possibility for genome sequencing.  相似文献   

20.
【背景】桑氏链霉菌(Streptomyces sampsonii)KJ40是一株具有防病、促生多重功能的放线菌,有作为生物农药的潜力。目前还没有相关研究报道S.sampsonii全基因组序列,这限制了其功能基因、代谢产物合成途径及比较基因组学等研究。【目的】解析S.sampsonii KJ40的基因组序列信息,以深入研究该菌株防病促生机制及挖掘次级代谢产物基因资源。【方法】利用Illumina HiSeq高通量测序平台对KJ40菌株进行全基因组测序,使用相关软件对测序数据进行基因组组装、基因预测和功能注释、预测次级代谢产物合成基因簇、共线性分析等。【结果】基因组最后得到9个Scaffolds和578个Contigs,总长度为7 261 502 bp,G+C%含量平均为73.41%,预测到6 605个基因、1 260个串联重复序列、804个小卫星序列、67个微卫星序列、90个tRNA、9个rRNA和19个sRNA。其中,2 429、3 765、2 890、6 063和1 911个基因分别能够在COG、GO、KEGG、NR和Swiss-Prot数据库提取到注释信息。同时,还预测得到21个次级代谢产物合成基因簇。基因组测序数据提交至NCBI获得Gen Bank登录号:LORI00000000。S.sampsonii KJ40与Streptomyces coelicolor A3(2)、Streptomyces griseus subsp.griseus NBRC 13350三株链霉菌基因组存在翻转、易位等基因组重排,3个基因组共有1 711个蛋白聚类簇。【结论】研究为从基因组层面上解析KJ40菌株具有良好促生防病效果的内在原因提供基础数据,为深入了解链霉菌次级代谢合成途径提供参考信息,对S.sampsonii后续相关研究具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号