首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ashkenazi Jewish population is enriched for carriers of a fatal form of Tay-Sachs disease, an inherited disorder caused by mutations in the alpha-chain of the lysosomal enzyme, beta-hexosaminidase A. Until recently it was presumed that Tay-Sachs patients from this ethnic isolate harbored the same alpha-chain mutation. This was disproved by identification of a splice junction defect in the alpha-chain of an Ashkenazi patient which could be found in only 20-30% of the Ashkenazi carriers tested. In this study we have isolated the alpha-chain gene from an Ashkenazi Jewish patient, GM515, with classic Tay-Sachs disease who was negative for the splice junction defect. Sequence analysis of the promoter region, exon and splice junctions regions, and polyadenylation signal area revealed a 4-base pair insertion in exon 11. This mutation introduces a premature termination signal in exon 11 which results in a deficiency of mRNA in Ashkenazi patients. A dot blot assay was developed to screen patients and heterozygote carriers for the insertion mutation. The lesion was found in approximately 70% of the carriers tested, thereby distinguishing it as the major defect underlying Tay-Sachs disease in the Ashkenazi Jewish population.  相似文献   

2.
Abnormal beta-hexosaminidase alpha chain cDNA clones were isolated from fibroblasts of an Ashkenazi Jewish patient with Tay-Sachs disease. Four abnormal cDNA clones were sequenced in their entirety. We showed previously that three of these mRNAs retained intron 12 with a mutation from G to C at the 5' donor site and that the patient was heterozygous with respect to this splicing defect (Ohno, K., and Suzuki, K., (1988) Biochem. Biophys. Res. Commun. 153, 463-469). One clone retained, in addition to intron 12, intron 13, which was truncated and polyadenylated due to a polyadenylation signal within intron 13. The fourth clone did not contain intron 12 and was missing exon 12. Some of these abnormal mRNAs were also missing one or more of upstream exons. The regions of exon 12-intron 12 and of upstream exons were evaluated in a total of 30 clones, including those completely sequenced, by restriction mapping and Southern analysis with appropriate probes. Of the 25 cDNA clones that included the exon 12-intron 12 region, 11 contained the exon 12-intron 12 sequence with the junctional transversion, and 11 were missing both exon 12 and intron 12. Among the 12 clones that included the region of exon 3-exon 9, 7 were missing one or more of upstream exons. Three clones gave results expected of normal cDNA in the region of exons 12 and 13. One of the three, furthermore, was 3.6-kilobases long and contained the completely normal beta-hexosaminidase alpha chain mRNA sequence on the 3' side and an abnormal 1.7-kilobase segment at the 5' end. These findings suggest that the splicing defect results in either retention of intron 12 or skipping of exon 12 in approximately equal proportions and that remote upstream exons are also frequently excised out. The three clones that were normal in the exon 12-intron 12 region could have derived from the other yet-to-be-characterized mutant allele. However, we were unable to obtain firm evidence that the abnormal upstream sequence is directly related to Tay-Sachs disease.  相似文献   

3.
Tay-Sachs disease is an inherited lysosomal storage disorder caused by defects in the beta-hexosaminidase alpha-subunit gene. The carrier frequency for Tay-Sachs disease is significantly elevated in both the Ashkenazi Jewish and Moroccan Jewish populations but not in other Jewish groups. We have found that the mutations underlying Tay-Sachs disease in Ashkenazi and Moroccan Jews are different. Analysis of a Moroccan Jewish Tay-Sachs patient had revealed an in-frame deletion (delta F) of one of the two adjacent phenylalanine codons that are present at positions 304 and 305 in the alpha-subunit sequence. The mutation impairs the subunit assembly of beta-hexosaminidase A, resulting in an absence of enzyme activity. The Moroccan patient was found also to carry, in the other alpha-subunit allele, a different, and as yet unidentified, mutation which causes a deficit of mRNA. Analysis of obligate carriers from six unrelated Moroccan Jewish families showed that three harbor the delta F mutation, raising the possibility that this defect may be a prevalent mutation in this ethnic group.  相似文献   

4.
A simple, rapid, nonradioactive assay for detecting the 4-bp insertion defect found in the beta-hexosaminidase alpha-chain gene of 70% of the Ashkenazi Jewish carriers of Tay-Sachs disease is described. In this assay, DNA derived from such carriers serves as a template for the polymerase chain reaction. Following amplification of a 159-bp fragment of exon 11 inclusive of the insertion, a portion of the product is subjected to electrophoresis in a 4% NuSieve agarose minigel. Visualization of the DNA with ethidium bromide demonstrates that heterozygote carriers for the defect display two distinct bands. In contrast, DNA from carriers of the splice junction defect, a mutation found in 30% of the Ashkenazi Jewish carriers of Tay-Sachs disease, displays only one band.  相似文献   

5.
Infantile Tay-Sachs disease (TSD) is caused by mutations in the HEXA gene that result in the complete absence of beta-hexosaminidase A activity. It is well known that an elevated frequency of TSD mutations exists among Ashkenazi Jews. More recently it has become apparent that elevated carrier frequencies for TSD also occur in several other ethnic groups, including Moroccan Jews, a subgroup of Sephardic Jews. Elsewhere we reported an in-frame deletion of one of the two adjacent phenylalanine codons at position 304 or 305 (delta F304/305) in one HEXA allele of a Moroccan Jewish TSD patient and in three obligate carriers from six unrelated Moroccan Jewish families. We have now identified two additional mutations within exon 5 of the HEXA gene that account for the remaining TSD alleles in the patient and carriers. One of the mutations is a novel C-to-G transversion, resulting in a replacement of Tyr180 by a stop codon. The other mutation is a G-to-A transition resulting in an Arg170-to-Gln substitution. This mutation is at a CpG site in a Japanese infant with Tay-Sachs disease and was described elsewhere. Analysis of nine obligate carriers from seven unrelated families showed that four harbor the delta F304/305 mutation, two the Arg170----Gln mutation, and one the Tyr180----Stop mutation. We also have developed rapid, nonradioactive assays for the detection of each mutation, which should be helpful for carrier screening.  相似文献   

6.
Samples of genomic DNA from three unrelated American black infants having both biochemical and clinical features of classical infantile Tay-Sachs disease were sequenced following PCR amplification. A G----T transversion was observed in the AG acceptor splice site preceding exon 5 of the beta-hexosaminidase alpha-subunit gene in the first black family. This transversion changed the acceptor splice site from the consensus sequence, AG, to AT, thereby interfering with splicing at this intron 4/exon 5 junction. The proband was homozygous for this mutation; his mother and a brother are heterozygous. The same mutation was found in a second, apparently unrelated, black GM2-gangliosidosis patient. The second patient was a compound heterozygote, as only one allele carried this mutation. The mother and a brother in this second family are carriers for this mutation, while the father and a noncarrier sister are normal for this region of the gene. The third proband did not have this mutation; nor did the mother of a fourth black proband. Eight other independently ascertained non-black, non-Jewish, GM2-gangliosidosis families did not have this mutation. The observation of the same novel mutation in two unrelated black GM2-gangliosidosis patients indicates that the American black population has segregating within it at least one GM2-gangliosidosis mutation which may be specific to this population and not a result of migration.  相似文献   

7.
The abnormality in the gene coding for the beta-hexosaminidase alpha subunit was analyzed in a non-Jewish patient with clinically typical infantile Tay-Sachs disease. The family was Catholic, and the father and the mother were of Irish and German descent, respectively. A hitherto undescribed single nucleotide transversion was found within exon 11 (G1260----C; Trp420----Cys). The coding sequence was otherwise entirely normal. Expression in the COS I cell system confirmed that the mutant gene does not produce functional enzyme protein. The mutation can be identified rapidly and reliably because it abolishes one of the two KpnI sites in the coding sequence. The patient was a compound heterozygote with one allele carrying this mutation. The nature of the abnormality in the other allele remains unidentified. Examination of genomic DNA from the parents demonstrated that this "Kpn mutation" was inherited from the maternal side of the family.  相似文献   

8.
Mutations at the hexosaminidase A (HEXA) gene which cause Tay-Sachs disease (TSD) have elevated frequency in the Ashkenazi Jewish and French-Canadian populations. We report a novel TSD allele in the French-Canadian population associated with the infantile form of the disease. The mutation, a GA transition at the +1 position of intron 7, abolishes the donor splice site. Cultured human fibroblasts from a compound heterozygote for this transition (and for a deletion mutation) produce no detectable HEXA mRNA. The intron 7+1 mutation occurs in the base adjacent to the site of the adult-onset TSD mutation (G805A). In both mutations a restriction site for the endonuclease EcoRII is abolished. Unambiguous diagnosis, therefore, requires allele-specific oligonucleotide hybridization to distinguish between these two mutant alleles. The intron 7+1 mutation has been detected in three unrelated families. Obligate heterozygotes for the intron 7+1 mutation were born in the Saguenay-Lac-St-Jean region of Quebec. The most recent ancestors common to obligate carriers of this mutation were from the Charlevoix region of the province of Quebec. This mutation thus has a different geographic centre of diffusion and is probably less common than the exon 1 deletion TSD mutation in French Canadians. Neither mutation has been detected in France, the ancestral homeland of French Canada.  相似文献   

9.
A single nucleotide transition within exon 5 of the beta-hexosaminidase alpha chain gene was identified in a Puerto Rican patient with GM2-gangliosidosis B1 variant as the mutation responsible for the unusual enzymological characteristics of this variant (G533----A; Arg178----His) (the DN-allele). A total of seven patients with enzymological characteristics of B1 variant have since been studied. They were Puerto Rican (DN), Italian, French, Spanish, two patients of mixed ethnic origin (English/Italian/Hungarian and English/French/Azores), and a Czechoslovakian. In confirmation of our earlier finding based on screening with allele-specific probes, all patients except the one from Czechoslovakia carried the same DN-allele. A new point mutation found in this patient changed the same codon affected in the DN-allele (C532----T; Arg178----Cys). An asymptomatic Japanese individual included as a control also carried one allele with the DN-mutation. Site-directed mutagenesis and expression studies in COS I cells demonstrated that either of the two point mutations abolishes the catalytic activity of the alpha subunit. The Spanish patient was homozygous for the DN-allele, but others were all compound heterozygotes. The Puerto Rican patient was a compound heterozygote with the DN-mutation in one allele and with the four-base insertion in exon 11, one of the two mutations found in the classical Ashkenazi Jewish Tay-Sachs disease, in the other allele. Abnormalities of the other allele were not identified in all other compound heterozygous patients. In these patients, the level of mRNA derived from the other allele was variable, ranging from being undetectable to being much lower than normal. This series of studies uncovered a new B1 variant mutation, confirmed our preliminary finding that the DN-allele has a surprisingly wide geographic and ethnic distribution, and pointed out the highly complex nature of the molecular genetics of this rare disorder. They also support our working hypothesis that mutations responsible for the unique enzymological characteristics of the B1 variant should be located in or near exon 5 of the gene and that this region of the enzyme protein is critical for its catalytic function.  相似文献   

10.
11.
Mutations in the HEX A gene, encoding the alpha-subunit of beta-hexosaminidase A (Hex A), are the cause of Tay-Sachs disease as well as of juvenile, chronic, and adult GM2 gangliosidoses. We have examined the distribution of three mutations--a 4-nucleotide insertion in exon 11, a G----C transversion at a 5' splice site in intron 12, and a 269Gly----Ser amino acid substitution in exon 7--among individuals enzymatically diagnosed as carriers of Hex A deficiency. Mutation analysis included polymerase chain reaction (PCR) amplification of the relevant regions of genomic DNA, followed by allele-specific oligonucleotide hybridization; another test for heterozygosity of the exon 11 insertion was based on the formation of heteroduplex PCR fragments of low electrophoretic mobility. The percentage distribution of the exon 11, intron 12, exon 7, and unidentified mutant alleles was 73:15:4:8 among 156 Jewish carriers of Hex A deficiency and 16:0:3:81 among 51 non-Jewish carriers. Regardless of the mutation, the ancestral origin of the Jewish carriers was primarily eastern and (somewhat less often) central Europe, whereas for the non-Jewish carriers it was western Europe. Because a twelfth of the Jewish carriers and four-fifths of the non-Jewish carriers of Hex A deficiency had mutant alleles other than the three common ones tested, enzyme-based tests cannot be replaced by DNA-based tests at the present time. However, DNA-based tests for two-carrier couples could identify those at risk for the chronic/adult GM2 gangliosidoses rather than for infantile Tay-Sachs disease.  相似文献   

12.
13.
Several studies on small homogenous populations suggested that fragile-X syndrome originated from a limited number of founder chromosomes. The Israeli Jewish population could serve as an adequate model for tracing a founder effect due to the unique ethnic makeup and traditional lifestyle. Furthermore, a common haplotype for Jewish Tunisian fragile X patients was recently reported. To test for a similar occurrence in the Jewish Ashkenazi population, we performed haplotype analysis of 23 fragile-X patients and 28 normal chromosomes, all Jewish Ashkenazi, using microsatellite markers within and flanking the FMR-1 gene: FRAXAC1, FRAXAC2, and DXS548. The combined triple-marker analysis identified a wide range of diverse haplotypes in patients and controls, with no distinct haplotype prevalent in the patient group. Our data suggest that no common ancestral X chromosome is associated with the fragile-X syndrome in the Israeli Jewish Ashkenazi patient population studied. These findings are in contrast to other reports on founder effect associated with fragile-X syndrome in distinct European as well as Jewish Tunisian populations. On this basis, a more complex mechanism for the development of fragile-X syndrome in the Jewish Ashkenazi population should be considered. Received: 12 May 1997 / Accepted: 24 July 1997  相似文献   

14.
Abnormal beta-hexosaminidase beta chain cDNA clones were isolated from a library constructed from cultured fibroblasts of a patient with a juvenile form of Sandhoff disease (genetic beta-hexosaminidase A and B deficiency). Sequence analysis of a cDNA clone isolated from these fibroblasts contained an extra 24-base segment between exons 12 and 13. This segment was identified as the 3' terminus of intron 12. The remainder of the coding sequence was completely normal. The same 24-base insertion was found in four additional clones by sequencing. Restriction mapping analysis of seven other clones was consistent with the presence of the same 24-base intron 12 segment. This insertion is inframe and adds 8 amino acids between amino acids 491 and 492 of the primary sequence of the normal enzyme protein. It is located only 5 amino acids away from a possible glycosylation site. The finding is consistent with the slightly larger than normal size of the beta subunit precursor protein observed by immunoprecipitation. No normally spliced mRNA was detected. Gene amplification by the polymerase chain reaction and subsequent sequencing of genomic DNA indicated that the patient was a compound heterozygote. In one allele, there was a single nucleotide transition from normal G to A at 26 bases from the 3' terminus of intron 12. This mutation generates a consensus sequence for the 3' splice site for an intron, CAG/G, and thus explains the abnormal mRNAs that retain 24 bases of the 3' terminus of intron 12. The intron 12 and flanking exons 12 and 13 sequences were normal in the other allele, which is a priori also genetically abnormal. The other mutant allele therefore is likely to be of an mRNA-negative type.  相似文献   

15.
A study was undertaken to characterize the mutation(s) responsible for Tay-Sachs disease (TSD) in a Cajun population in southwest Louisiana and to identify the origins of these mutations. Eleven of 12 infantile TSD alleles examined in six families had the beta-hexosaminidase A (Hex A) alpha-subunit exon 11 insertion mutation that is present in approximately 70% of Ashkenazi Jewish TSD heterozygotes. The mutation in the remaining allele was a single-base transition in the donor splice site of the alpha-subunit intron 9. To determine the origins of these two mutations in the Cajun population, the TSD carrier status was enzymatically determined for 90 members of four of the six families, and extensive pedigrees were constructed for all carriers. A single ancestral couple from France was found to be common to most of the carriers of the exon 11 insertion. Pedigree data suggest that this mutation has been in the Cajun population since its founding over 2 centuries ago and that it may be widely distributed within the population. In contrast, the intron 9 mutation apparently was introduced within the last century and probably is limited to a few Louisiana families.  相似文献   

16.
Gaucher disease is the most frequent lysosomal storage disease and the most prevalent Jewish genetic disease. About 30 identified missense mutations are causal to the defective activity of acid beta-glucosidase in this disease. cDNAs were characterized from a moderately affected 9-year-old Ashkenazi Jewish Gaucher disease type 1 patient whose 80-year-old, enzyme-deficient, 1226G (Asn370----Ser [N370S]) homozygous grandfather was nearly asymptomatic. Sequence analyses revealed four populations of cDNAs with either the 1226G mutation, an exact exon 2 (delta EX2) deletion, a deletion of exon 2 and the first 115 bp of exon 3 (delta EX2-3), or a completely normal sequence. About 50% of the cDNAs were the delta EX2, the delta EX2-3, and the normal cDNAs, in a ratio of 6:3:1. Specific amplification and characterization of exon 2 and 5' and 3' intronic flanking sequences from the structural gene demonstrated clones with either the normal sequence or with a G+1----A+1 transition at the exon 2/intron 2 boundary. This mutation destroyed the splice donor consensus site (U1 binding site) for mRNA processing. This transition also was present at the corresponding exon/intron boundary of the highly homologous pseudogene. This new mutation, termed "IVS2 G+1----A+1," is the first splicing mutation described in Gaucher disease and accounted for about 3.4% of the Gaucher disease alleles in the Ashkenazi Jewish population. The occurrence of this "pseudogene"-type mutation in the structural gene indicates the role of acid beta-glucosidase pseudogene and structural gene rearrangements in the pathogenesis of this disease.  相似文献   

17.
P C Demacio  P N Ray 《Génome》2001,44(6):990-994
Familial dysautonomia is a severe autosomal-recessive neurodegenerative disease that primarily affects the Ashkenazi Jewish population. We present the mapping of alpha-catulin and show that it maps precisely to the familial dysautonomia candidate region on 9q31. Patient sequence analysis identified two new sequence variants, which show linkage disequilibrium with this disease. A G to A transition at nucleotide 423 in exon 3 is a silent base change that does not alter the Val residue at position 141. A G to C transversion at nucleotide 1579 changes the Glu at postion 527 to Gln. These base changes were analyzed in several patients, unaffected Ashkenazi Jewish controls, and non-Jewish controls. Because of the presence of these sequence variants in several unaffected individuals, alpha-catulin is unlikely to be the causative gene in this disease.  相似文献   

18.
The Na(+)/glucose cotransporter gene SGLT1 was analyzed in a Japanese patient with congenital glucose-galactose malabsorption. Genomic DNA was used as a template for amplification by the polymerase chain reaction of each of the 15 exons of SGLT1. The amplification products were cloned and sequenced. About half of the exon 5 clones of the patient contained a C-->T transition, resulting in an Arg(135)-->Trp mutation, whereas the remaining clones contained the normal exon 5 sequence. In addition, whereas some exon 12 clones exhibited the normal sequence, others showed a CAgtaggtatcatc-->CAgacc mutation at the splice donor site of intron 12 that may result either in the skipping of exon 12 or in read-through of intron 12. Neither the Arg(135)-->Trp mutant nor either of the possible intron 12 mutant proteins exhibited Na(+)-dependent glucose transport activity when expressed in Xenopus oocytes. Immunocytochemical analysis indicated, however, that the Arg(135)-->Trp mutant was localized to the oocyte plasma membrane. DNA sequence analysis revealed that the missense mutation in exon 5 and the splice site mutation in intron 12 were inherited from the proband's father and mother, respectively. These results indicate that the patient is a compound heterozygote for this disease, and that the Arg(135)-->Trp mutant of SGLT1 undergoes normal trafficking to the plasma membrane but is non-functional.  相似文献   

19.
From data collected in a North American Tay-Sachs disease (TSD) heterozygote screening program, the TSD carrier frequency among 46,304 Jewish individuals was found to be .0324 (1 in 31 individuals). This frequency is consistent with earlier estimates based on TSD incidence data. TSD carrier frequencies were then examined by single country and single region of origin in 28,029 Jews within this sample for whom such data were available for analysis. Jews with Polish and/or Russian ancestry constituted 88% of this sample and had a TSD carrier frequency of .0327. No TSD carriers were observed among the 166 Jews of Near Eastern origins. Relative to Jews of Polish and Russian origins, there was at least a twofold increase in the TSD carrier frequency in Jews of Austrian, Hungarian, and Czechoslovakian origins (P less than .005). These findings suggest that the TSD gene proliferated among the antecedents of modern Ashkenazi Jewry after the Second Diaspora (70 A.D.) and before their major migrations to regions of Poland and Russia (before 1100 A.D.).  相似文献   

20.
A 3-year-old boy developed progressive neurological deterioration in his third year, characterized by dementia, ataxia, myoclonic jerks, and bilateral macular cherry-red spots. Hexosaminidase A (HEX A) was partially decreased in the patient''s serum, leukocytes, and cultured skin fibroblasts. Hexosaminidase was studied in serum and leukocytes from family members. Four members of the paternal branch appeared to be carriers of classical infantile Tay-Sachs allele, HEX alpha 2, probably receiving the gene from one great-grandparent of Ashkenazi origin. In the maternal branch, no one was a carrier of classical infantile Tay-Sachs disease, but five individuals were carriers of a milder alpha-locus defect. The patient, therefore, was a genetic compound of two different alpha-locus hexosaminidase mutations. At least 21 families with late-infantile or juvenile GM2 gangliosidosis have been reported, 18 of them with alpha-locus mutations, and three with beta-locus mutations. Genetic compounds of hexosaminidase have been reported in at least seven families, five with alpha-locus mutations and two with beta-locus mutations. The compound had the phenotype of infantile Tay-Sachs disease in one family, infantile Sandhoff disease in another, and the normal phenotype in the rest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号