首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circulating 3beta-hydroxysteroids including dehydroepiandrosterone (DHEA) are 7alpha-hydroxylated by the cytochrome P450-7B1 in the liver, skin and brain, which are the target organs of glucocorticoids. Anti-glucocorticoid effects with 7alpha-hydroxy-DHEA were observed in vivo without an interference with glucocorticoid binding to its receptor. In the organs mentioned above, the circulating inactive cortisone was reduced into active cortisol by the 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1). We demonstrated that 7alpha-hydroxy-DHEA was also a substrate for this enzyme. Studies of the 11beta-HSD1 action on 7alpha-hydroxy-DHEA showed the reversible production of 7beta-hydroxy-DHEA through an intermediary 7-oxo-DHEA, and the kinetic parameters favored this production over that of active glucocorticoids. Both the production of 7alpha-hydroxysteroids and their interference with the activation of cortisone into cortisol are basic to the concept of native anti-glucocorticoids efficient at their production site. This opens a promising new area for research.  相似文献   

2.
Dehydroepiandrosterone (DHEA) is 7alpha-hydroxylated by the cytochome P450 7B1 (CYP7B1) in the human brain and liver. This produces 7alpha-hydroxy-DHEA that is a substrate for 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) which exists in the same tissues and carries out the inter-conversion of 7alpha- and 7beta-hydroxy-DHEA through a 7-oxo-intermediary. Since the role of 11beta-HSD1 is to transform the inactive cortisone into active cortisol, its competitive inhibition by 7alpha-hydroxy-DHEA may support the paradigm of native anti-glucocorticoid arising from DHEA. Therefore, our objective was to use human tissues to assess the presences of both CYP7B1 and 11beta-HSD1. Human skin was selected then and used to test its ability to produce 7alpha-hydroxy-DHEA, and to test the interference of 7alpha- and 7beta-hydroxy-DHEA and 7-oxo-DHEA with the 11beta-HSD1-mediated oxidoreduction of cortisol and cortisone. Immuno-histochemical studies showed the presence of both CYP7B1 and 11beta-HSD1 in the liver, skin and tonsils. DHEA was readily 7alpha-hydroxylated when incubated using skin slices. A S9 fraction of dermal homogenates containing the 11beta-HSD1 carried out the oxidoreduction of cortisol and cortisone. Inhibition of the cortisol oxidation by 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA was competitive with a Ki at 1.85+/-0.495 and 0.255+/-0.005 microM, respectively. Inhibition of cortisone reduction by 7-oxo-DHEA was of a mixed type with a Ki at 1.13+/-0.15 microM. These findings may support the previously proposed native anti-glucocorticoid paradigm and suggest that the 7alpha-hydroxy-DHEA production is a key for the fine tuning of glucocorticoid levels in tissues.  相似文献   

3.
The human brain is a target tissue for glucocorticoids (GC). Dehydroepiandrosterone (DHEA) is a neurosteroid produced in the brain where it is transformed into 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA. The antiglucocorticoid effects of both 7-hydroxylated metabolites have been investigated with evidence in mice that neither form of DHEA interfered with the binding of GC to its glucocorticoid receptor (GR), but contributed to a decreased nuclear uptake of the activated GR. Our objective was to use COS-7 cell culture to research DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA interferences with GR trafficking. These cells did not carry out the 7alpha-hydroxylation of DHEA and the oxidation of cortisol into cortisone. The cDNA of the human GR was inserted into pcDNA3 for a transient transfection of COS-7 cells. Human GR transactivation activity was measured from a luciferase-MMTV reporter gene. The transfected COS-7 cells were cultured using 10(-12) to 10(-5) M dexamethasone (DEX) or cortisol, which triggered the reporter expression. Treatment with 10(-12) to 10(-5) M DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA caused no change in the GC-induced GR transactivation. A reconstruction of the process associated EGFP to the human GR cDNA. Confocal microscopic examination of COS-7 cells transiently expressing the fusion protein EGFP-GR showed nuclear fluorescence 60 min after incubation with 10(-8) M DEX or cortisol. The addition of 10(-5) M DHEA, 7alpha-hydroxy-DHEA or 7beta-hydroxy-DHEA did not change its kinesis and intensity. These results contribute to the knowledge of DHEA, 7alpha-hydroxy-DHEA and 7beta-hydroxy-DHEA, in relation to antiglucocorticoid activity. We conclude that direct interference with GR trafficking can be discounted in the case of these hormones, therefore proposing new possibilities of investigation.  相似文献   

4.
Human tonsils were assessed for their ability to 7alpha-hydroxylate pregnenolone (PREG), dehydroepiandrosterone (DHEA) and 3-epiandrosterone (EPIA). Both 7alpha-hydroxy-DHEA and 7alpha-hydroxy-EPIA were produced by homogenates of either whole tonsils or of lymphocyte-depleted tonsil fractions. In contrast, isolated lymphocytes were found to be unable to carry out 7alpha-hydroxylation. When co-cultures of tonsil-derived T and B lymphocytes were set up under stimulatory conditions, IgGs were released in the supernatants and could be quantitated, and immunomodulating properties of different steroids were monitored. When PREG was added to a mixture of tonsil-derived B and T lymphocytes, a decrease of non-specific and specific IgG was observed. An increase in specific anti-tetanus toxoid and anti-Bordetella pertussis antigen IgGs was obtained with either 1 microM 7alpha-hydroxy-DHEA or 1 microM 7alpha-hydroxy-EPIA. In contrast, DHEA and EPIA were unable to trigger such an effect. When cultures of isolated tonsillar B cells were used, none of the steroids tested showed significant effects on specific IgG productions. These data led to the conclusion that human tonsillar cells transform DHEA and EPIA, but not PREG, into 7alpha-hydroxylated metabolites. These metabolites could act on target tonsillar T lymphocytes which in turn act upon B lymphocytes for increasing specific IgG production.  相似文献   

5.
The oxidation of dehydroepiandrosterone (DHEA), 4-androstene-3, 17-dione, and estrone with Streptomyces roseochromogenes NRRL B-1233 was studied. The oxidation products were isolated and identified as as 16alpha-hydroxy-DHEA, 16alpha-hydroxy-4-androstene-3,17-dione and 16alpha-hydroxyestrone. The yields of these three products were 85%, 41% and 18%, respectively. This indicates the substrate stereospecificity of 16alpha-hydroxylase of the organism. An interrelationship between cell growth and the formation of 16alpha-hydroxylated steroid was observed in any case. For formation of 16alpha-hydroxy-DHEA, 16alpha-hydroxylase showed good activity at DHEA concentration of 3.47 x 10(-4)M. In the case of DHEA, 16alpha-hydroxy-4-androstene-3,17-dione and 5-androstene-3beta, 16alpha, 17beta-triol were obtained after the yield of 16alpha-hydroxy-DHEA reached the maximum yield for about 30 hr. The oxidation pathway of DHEA is discussed.  相似文献   

6.
This study examined in healthy male Wistar rats the in vivo antioxidant effect of dehydroepiandrosterone (DHEA) and 7alpha-hydroxy-DHEA administered by intraperitoneal injections (50 mg/kg body weight) for 2 or 7 days. Markers of oxidative damage to lipids (thiobarbituric acid-reacting substances, TBARS) and to proteins (protein carbonyls) were assessed in colon, small intestine, and liver homogenates. DHEA and 7alpha-hydroxy-DHEA caused a decrease in body weight. DHEA treatment significantly increased liver, colon, and small intestine cell weights. After 7 days, DHEA exerted an antioxidant effect in all organs studied. In the colon, oxidative damage protection was accompanied by a goblet cell proliferation and increase in acidic mucus production. After 2 days, the antioxidant effect of 7alpha-hydroxy-DHEA was mainly observed in the liver. Nonprotein sulfhydryl groups (mostly glutathione levels) were altered by DHEA in the liver whereas they remained unchanged after 7alpha-hydroxy-DHEA treatment. The results indicate that in healthy animals, DHEA exerts a protective effect, particularly in the colon, by reducing the tissue susceptibility to oxidation of both lipids and proteins. This effect was not limited to a specific tissue, whereas the metabolite 7alpha-hydroxy-DHEA exerted its antioxidant effect towards the two markers of oxidative damage earlier than DHEA, and mainly in the liver.  相似文献   

7.
Thymocytes undergo negative and positive selection during development in the thymus. During this selection process, the majority of thymocytes are eliminated by apoptosis through signaling via TCR or die by neglect, possibly mediated through glucocorticoids. In this study, we report that thymocytes require molecular oxygen to undergo apoptosis induced by dexamethasone (DEX), a synthetic glucocorticoid, and treatment with N-acetyl-L-cysteine (NAC), a thiol antioxidant, inhibits thymocyte apoptosis in vivo as well as ex vivo. We detected elevated intracellular levels of hydrogen peroxide (H(2)O(2)) during DEX-induced apoptosis, which is reduced by NAC treatment, indicating that the elevated levels of intracellular H(2)O(2) are proapoptotic. We also show that loss of mitochondrial membrane potential, cytochrome c release, as well as caspase-3 activation induced by DEX are attenuated by NAC treatment. We identified the production site for H(2)O(2) as the ubiquinone cycle at complex III of mitochondria by using various inhibitors of the mitochondrial electron transport chain, and we show that the cell death events mediated by mitochondria are also significantly reduced when the inhibitors were used. Through inhibition of the proteasome, we also show that the production of H(2)O(2) and the cell death events mediated by mitochondria are regulated by proteosomal activities in DEX-induced thymocyte apoptosis. We conclude that in DEX-treated thymocytes, the increased production of H(2)O(2) originates from mitochondria and is proapoptotic for cell death mediated by mitochondria. We also conclude that all the apoptotic events mediated by mitochondria are regulated by proteasomes.  相似文献   

8.
脱氢表雄酮(DHEA)已成为防治绝经后骨质疏松症(PMO)的新策略,但其调控成骨细胞(OB)凋亡的具体分子机制和信号转导途径尚不清楚。我们通过颅骨酶解法原代培养OB,体外模拟雌激素撤退现象,10-7mol/LDHEA分别作用0h、24h、48h、72h后,RT-PCR分析OB中ERα、ERβ和ARmRNA表达;原代OB去血清进一步培养24h,细胞以雌激素受体(ER)拮抗剂ICI182,780(1μmol/L)、雄激素受体(AR)拮抗剂Flutamide(10μmol/L)或U0126(100μmol/L)预处理后给予系列浓度DHEA(10-10-10-5mol/L)孵育72h,AnnexinV-FITC/PI双标记流式细胞仪分析细胞早期凋亡;原代OB以1μmol/LICI182,780或10μmol/LFlutamide预处理25min后给予不同浓度DHEA孵育10min,Westernblotting分析ERK1/2的磷酸化状态。结果表明OBs经10-7mol/LDHEA体外处理24h、48h、72h后,ERβ和ARmRNA水平升高(分别为P<0.05和P<0.01);而ERαmRNA水平无明显变化。10-9-10-6mol/LDHEA可显著抑制血清饥饿诱导的OBs早期凋亡(分别为P<0.05及P<0.01),该抑制效应可被U0126阻滞,ICI182,780或Flutamide则不能阻滞DHEA对OB的抗凋亡效应;Westernblot也显示ICI182,780或Flutamide都不能有效地阻滞DHEA对OB中ERKs磷酸化的诱导作用。因此可认为DHEA经ER或AR非依赖途径抑制OB凋亡;丝裂原活化蛋白激酶(MAPK)信号途径,磷酸化ERK1/2参与介导这一作用。  相似文献   

9.
10.
11.
Pélissier MA  Muller C  Hill M  Morfin R 《Steroids》2006,71(3):240-248
In this study the anti-oxidant effect of DHEA and 7alpha-hydroxy-DHEA against oxidative stress induced by colitis was investigated in vivo in rats. The two steroids were intraperitoneally injected once daily (50 mg/kg body weight) for 7 days before the induction of colitis that was effected by a daily treatment of 5% (w/v) dextran sodium sulfate (DSS) in drinking water for 7 days. This was quantified by the evidence of weight loss, rectal bleeding, increased wall thickness, and colon length. The inflammatory response was assessed by neutrophil infiltration after a histological examination and myeloperoxidase (MPO) activity measurement. Two markers of oxidative damage were measured in colon homogenates after the onset of DSS treatment: protein carbonyls and thiobarbituric acid-reacting substances. The colonic metabolism of corticosterone by 11beta-hydroxysteroid dehydrogenases types 1 and 2 (11beta-HSD) was investigated in control and treated animals. Results indicated that colitis caused a decrease in body weight and colon length. Severe lesions were observed in the colon with a reduced number of goblet cells which contained less mucins. The lesions were associated with increased MPO activity and oxidative damage. Colonic inflammation down and up regulated the 11beta-HSD2 and 11beta-HSD1, respectively. Treatments by DHEA and 7alpha-hydroxy-DHEA attenuated the inflammatory response when MPO activity decreased; but this did not increase the colonic oxidation of corticosterone into 11-dehydrocorticosterone. Both DHEA and 7alpha-hydroxy-DHEA exerted a significant anti-oxidant effect against oxidative stress induced by colitis through reducing the oxidative damage to proteins and lipids. This resulted in a moderate increase in the amount of colonic mucus. Both DHEA and 7alpha-hydroxy-DHEA may prove useful in the prevention or treatment of colitis.  相似文献   

12.
Glucocorticoids are widely used as anti-inflammatory and chemotherapeutic agents. However, prolonged use of glucocorticoids leads to osteoporosis. This study was designed to examine the mechanism of dexamethasone (DEX)-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 10(-7) M DEX for 6 h. DEX exerted a variety of effects on apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that DEX upregulated mRNA levels of caspases-1, -3, -6, -8, -11, -12, and bcl-XL. Western blot analysis showed enhanced processing of these caspases, with the appearance of their activated enzymes 8 h after DEX treatment. In addition, DEX also induced the activation of caspase-9. DEX elevated the levels of cleaved poly(ADP-ribose) polymerase and lamin A, a caspase-3 and a caspase-6 substrate, respectively. Expression of bcl-XL protein level was upregulated by DEX. Cytochrome c release was detected in the cytosol of DEX-treated cells. Furthermore, caspase-3 enzyme activity was elevated by 2-fold after DEX treatment for 7 h. Finally, early apoptotic cells were detected in cells treated with DEX for 3 h. Our results demonstrate that DEX-induced apoptosis involves gene activation of a number of caspases.  相似文献   

13.
BACKGROUND: Techniques to measure apoptosis are used to study a wide spectrum of conditions, from acquired immune deficiency syndrome (AIDS) to cancer to autoimmune diseases. Therefore, a critical comparison of common assays for apoptosis is warranted. METHODS: The kinetics of apoptosis induction in dexamethasone (DEX)-exposed thymocytes was examined after 2, 4, 8, 12, 26-28, and 48-50 h of culture. An additional aim was to ascertain whether a similar thymic atrophy-inducing hormone, diethylstilbestrol (DES), also directly induces thymocyte apoptosis. Apoptosis was evaluated by flow cytometric examination of cells stained with propidium iodide (PI), 7-aminoactinomycin D (7-AAD), or fluorescein isothiocyante (FITC)-annexin; by forward-and side-scatter (FS, SS) analysis, cell-size analyzer; and through cytopathologic examination. RESULTS: After 4 h of DEX exposure, apoptosis was evident by 7-AAD, annexin, and cytopathological assays, but no cells with sub-diploid DNA content were evident by PI analysis. Maximal apoptosis was evident by all the above flow cytometric techniques at 12 h after DEX exposure. The 7-AAD and annexin assays, which allow discrimination between early apoptosis and late apoptosis/necrosis, were comparable and identified similar apoptotic populations. Appearance of a FSlow/SSincreased population was evident only after 12 h of DEX exposure. Apoptosis could not be detected by any of the above assays in thymocytes exposed to various doses of DES. CONCLUSION: Two of the six assays, 7-AAD and annexin, were similar in detecting apoptosis at an early kinetic time point. Results of both assays were comparable at all time points studied. Our studies imply that DEX and DES induce thymic atrophy, in vivo, by different mechanisms.  相似文献   

14.
The dehydroepiandrosterone (DHEA) 7alpha-hydroxylation in humans takes place in the liver, skin, and brain. These organs are targets for the glucocorticoid hormones where 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) activates cortisone through its reduction into cortisol. The putative interference of 7alpha-hydroxy-DHEA with the 11beta-HSD1-catalyzed reduction of cortisone into cortisol has been confirmed in preliminary works with human liver tissue preparations of the enzyme demonstrating the transformation of 7alpha-hydroxy-DHEA into 7-oxo-DHEA and 7beta-hydroxy-DHEA. However, the large production of 7beta-hydroxy-DHEA could not be explained satisfactorily. Therefore our objective was to study the role in the metabolism of oxygenated DHEA by recombinant human 11beta-HSD1 expressed in yeast. The 7alpha- and 7beta-hydroxy-DHEA were each oxidized into 7-oxo-DHEA with quite dissimilar K(M) (70 and 9.5 microM, respectively) but at equivalent V(max). In contrast, the 11beta-HSD1-mediated reduction of 7-oxo-DHEA led to the production of both 7alpha- and 7beta-hydroxy-DHEA with equivalent K(M) (1.1 microM) but with a 7beta-hydroxy-DHEA production characterized by a significantly greater V(max). The 7alpha-hydroxy-DHEA produced by the cytochrome CYP7B1 in tissues may exert anti-glucocorticoid effects through interference with the 11beta-HSD1-mediated cortisone reduction.  相似文献   

15.
Thymic lymphomas and hybridomas vary in their sensitivity to dexamethasone (DEX). Identical variance has been demonstrated in our laboratory for apoptosis of such cells by primary thymic epithelial cells or a cell line (TEC). We have also shown that apoptosis induced by TEC was partially mediated by TEC-derived glucocorticoids (GC). We studied the responses of various thymic lymphomas and hybridomas to TEC and DEX. Of these cells, PD1.6 and 2B4 were sensitive whereas B10 were relatively resistant to either inducer. In the present study we found that TEC and DEX synergize in inducing B10 cell apoptosis. B10 cells could also undergo apoptosis by TEC, conditional upon the presence of a TEC-sensitive cell (PD1.6 or 2B4). Contact between TEC and B10 was essential for apoptosis to occur. Thus, TEC may provide two signals, one mediated by GC and the other requiring cell to cell contact. We then analyzed the involvement of co-stimulatory or adhesion molecules in the TEC-induced apoptosis of thymic lymphoma cells. Soluble anti-CD44 antibodies but not anti-CD18, CD2 or CD28, inhibited TEC-induced apoptosis of PD1.6. Dimerization of CD44 by immobilized antibodies augmented DEX-induced apoptosis of all the lymphomas tested. CD44 cross-linkage up-regulated expression of the pro-apoptotic protein Bax, and down-regulated the anti-apoptotic protein, Bclx(L), in the presence of DEX. Taken together, the data suggest that CD44 enhances the apoptotic response of T lymphoma cells to DEX, and that CD44 modulates TEC-induced apoptosis of thymic lymphomas.  相似文献   

16.
为观察瘦素诱导体外培养大鼠脂肪间充质干细胞凋亡的作用, 采用胶原酶消化法分离培养大鼠附睾脂肪垫间充质干细胞, 第3代细胞用于实验。细胞免疫荧光化学方法鉴定CD105、Vimentin表达阳性率约80%以上, 10-6 mol/L的瘦素作用细胞48 h、72 h后激光共聚焦显微镜观察分别可见早期及中晚期特征表现; 0 mol/L、10-8 mol/L、10-7 mol/L、10-6 mol/L瘦素分别作用于细胞48 h后, 应用AnnexinⅤ/PI双染色法流式细胞仪检测早期凋亡率分别为2.50%±0.72%、6.78%±1.99%、11.99%±1.58%、17.93%±4.82% (P<0.05); 随着瘦素浓度的增加和作用时间的延长, Caspase-3的活性逐渐增高, 至48 h时达到高峰。说明瘦素可以直接诱导脂肪间充质干细胞凋亡, 从数量上减少脂肪组织的含量。  相似文献   

17.
Administration of dehydroepiandrosterone (DHEA) to rodents produces many unique biological responses, some of which may be due to metabolism of DHEA to more biologically active products. In the current study, DHEA metabolism was studied using human and rat liver microsomal fractions. In both species, DHEA was extensively metabolized to multiple products; formation of these products was potently inhibited in both species by miconazole, demonstrating a principal role for cytochrome P450. In the rat, use of P450 form-selective inhibitors suggested the participation of P4501A and 3A forms in DHEA metabolism. Human liver samples displayed interindividual differences in that one of five subjects metabolized DHEA to a much greater extent than the others. This difference correlated with the level of P4503A activity present in the human liver samples. For one subject, troleandomycin inhibited hepatic microsomal metabolism of DHEA by 78%, compared to 81% inhibition by miconazole, suggesting the importance of P4503A in these reactions. Form-selective inhibitors of P4502D6 and P4502E1 had a modest inhibitory effect, suggesting that these forms may also contribute to metabolism of DHEA in humans. Metabolites identified by LC-MS in both species included 16alpha-hydroxy-DHEA, 7alpha-hydroxy-DHEA, and 7-oxo-DHEA. While 16alpha-hydroxy-DHEA appeared to be the major metabolite produced in rat, the major metabolite produced in humans was a mono-hydroxylated DHEA species, whose position of hydroxylation is unknown.  相似文献   

18.
Long-term and high-dose glucocorticoids (GCs) supplementation has been linked to osteoporosis. In this study, we studied the protective role of plumbagin against GC-induced cell damage in MC3T3-E1 cells. The effect of dexamethasone (DEX) and plumbagin on cell viability was determined. DEX showed as IC-50 value of 95 μM. Further, 10 μM plumbagin treatment effectively ameliorated DEX-induced cell death by increasing the cell viability to 92 %. A further effect of plumbagin on DEX-induced oxidative stress was determined through reactive oxygen species (ROS) level, lipid peroxide content, and antioxidant status. Nrf-2 nuclear localization was analyzed through immunofluorescence. Protein expression of redox regulator Nrf-2 and their target genes HO-1 and NQO1 and osteogenic markers (OCN, OPN Runx-2) were determined by Western blot. Apoptotic effect was analyzed by mitochondrial membrane potential and caspase activities (3, 8, and 9). The results showed that DEX treatment showed a significant increase in oxidative stress through increased ROS levels and downregulation of cytoprotective antioxidant proteins and antioxidant enzyme activities. Further DEX treatment downregulated the osteogenic markers and upregulated apoptosis through decreased mitochondrial membrane potential and upregulation of caspase activities. Plumbagin treatment significantly reversed the levels of oxidative stress and apoptotic markers and protected against DEX-induced cell damage. Further, plumbagin treatment significantly improved the expression of osteogenic markers compared to DEX treatment. In conclusion, the present study shows that plumbagin offers significant protective role against DEX-induced cellular damage via regulating oxidative stress, apoptosis, and osteogenic markers.  相似文献   

19.
Apoptosis is a physiological method of cell death commonly referred to as programmed cell death. However, non-apoptotic programmed cell death, such as autophagy and programmed necrosis, has been characterized by morphological criteria. In view of the human therapeutic use of DEX, and considering that no difference in the number and/or affinity of glucocorticoid receptors in activated and non-activated lymphocytes has been reported, we decided to evaluate the effect of DEX on fresh peripheral blood mononuclear cells (PBMC). Transmission electron microscopy showed that DEX can significantly induce apoptosis in non-activated PBMC. It was also observed by transmission electron microscopy that, independently of DEX treatment, PBMC also died by a process marked by extreme vacuolization and increase in cellular volume; these cells were erroneously classified as viable by flow cytometry using the 7-AAD assay. It is concluded that the DEX pro-apoptotic effect is not restricted to activated PBMC and, therefore, DEX-induced apoptosis could play either homeostatic (activated PBMC) or immunosuppressive (non-activated PBMC) roles.  相似文献   

20.
A highly sensitive and specific method has been developed for the simultaneous measurement of free (unconjugated) or sulfate-conjugated forms of dehydroepiandrosterone (DHEA), 7alpha-hydroxy-DHEA (7alpha-OH-DHEA), 7beta-hydroxy-DHEA (7beta-OH-DHEA), and 7-oxo-DHEA (7-oxo-DHEA) in human serum. This method is based upon a stable isotope-dilution technique by gas chromatography-selected-ion monitoring mass spectrometry. Free steroids were extracted from serum with an organic solvent and the sulfate-conjugated steroids remained in aqueous phase. Free steroids were purified by solid-phase extraction, while sulfate-conjugated steroids were hydrolyzed by sulfatase and deconjugated steroids were purified by solid-phase extractions. The extracts were treated with O-methylhydroxylamine hydrochloride and were subsequently dimethylisopropylsilylated. The resulting methyloxime-dimethylisopropylsilyl (MO-DMIPS) ether derivatives were quantified by gas chromatography-selected-ion monitoring mass spectrometry in a high-resolution mode. The detection limits of MO-DMIPS ether derivatives of DHEA, 7alpha-OH-DHEA, 7beta-OH-DHEA and 7-oxo-DHEA were 1.0, 0.5, 0.5 and 2.0pg, respectively. Coefficients of variation between samples ranged from 10.6 to 22.9% for free 7-oxygenated DHEA to less than 10% for DHEA and sulfate-conjugated 7-oxygenated DHEA. The concentrations of these steroids were measured in 18 sera samples from healthy volunteers (9 males and 9 females; aged 23-78 years). Free DHEA, 7alpha-OH-DHEA, 7beta-OH-DHEA and 7-oxo-DHEA levels ranged between 0.21-3.55, 0.001-0.194, 0.003-0.481, and 0.000-0.077ng/ml, respectively, and the sulfate-conjugated steroid levels of these metabolites ranged between 253-4681, 0.082-3.001, 0.008-0.903, and 0.107-0.803ng/ml, respectively. The free DHEA-related steroid concentrations were much lower than those previously measured by RIA and low-resolution GC-MS. The present method made it possible to determine simultaneously serum DHEA-related steroid levels with sufficient sensitivity and accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号