首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Here we accurately recreate the mechanical shedding of L-selectin and its effect on the rolling behavior of neutrophils in vitro using the adhesive dynamics simulation by incorporating the shear-dependent shedding of L-selectin. We have previously shown that constitutively expressed L-selectin is cleaved from the neutrophil surface during rolling on a sialyl Lewis x-coated planar surface at physiological shear rates without the addition of exogenous stimuli. Utilizing a Bell-like model to describe a shedding rate which presumably increases exponentially with force, we were able to reconstruct the characteristics of L-selectin-mediated neutrophil rolling observed in the experiments. First, the rolling velocity was found to increase during rolling due to the mechanical shedding of L-selectin. When most of the L-selectin concentrated on the tips of deformable microvilli was cleaved by force exerted on the L-selectin bonds, the cell detached from the reactive plane to join the free stream as observed in the experiments. In summary, we show through detailed computational modeling that the force-dependent shedding of L-selectin can explain the rolling behavior of neutrophils mediated by L-selectin in vitro.  相似文献   

2.
The interaction of L-selectin expressed on leukocytes with endothelial cells leads to capture and rolling and is critical for the recruitment of leukocytes into sites of inflammation. It is known that leukocyte activation by chemoattractants, the change of osmotic pressure in cell media, or cross-linking of L-selectin all result in rapid shedding of L-selectin. Here we present a novel mechanism for surface cleavage of L-selectin on neutrophils during rolling on a sialyl Lewis x-coated surface that involves mechanical force. Flow cytometry and rolling of neutrophils labeled with Qdot(R)-L-selectin antibodies in an in vitro flow chamber showed that the mechanical shedding of L-selectin occurs during rolling and depends on the amount of shear applied. In addition, the mechanical L-selectin shedding causes an increase in cell rolling velocity with rolling duration, suggesting a gradual loss of L-selectin and is mediated by p38 mitogen-activated protein kinase activation. Thus, these data show that mechanical force induces the cleavage of L-selectin from the neutrophil surface during rolling and therefore decreases the adhesion of cells to a ligand-presenting surface in flow.  相似文献   

3.
Chen C  Ba X  Xu T  Cui L  Hao S  Zeng X 《Journal of biochemistry》2006,140(2):229-235
L-selectin is a cell adhesion molecule mediating the initial capture and subsequent rolling of leukocytes along the endothelial cells expressing L-selectin ligands. In addition to its action in adhesion, an intracellular signaling role for L-selectin has been recognized. Its cytoplasmic domain is involved in signal transduction following antibody crosslinking and in the regulation of receptor binding activity in response to intracellular signals. In this work, we demonstrated that L-selectin crosslinking led to F-actin polymerization and redistribution in human neutrophils. Using immuno-fluorescence microscopy, we observed that F-actin redistribution spatiotemporally related to the polarization of L-selectin. STI571, a specific inhibitor for cytoplasmic tyrosine kinase c-Abl, can inhibit F-actin polymerization and c-Abl redistribution in the activated neutrophils. Furthermore, we determined that c-Abl redistributed to the region where L-selectin polarized and associated with L-selectin in the activated neutrophils. The association between L-selectin and c-Abl was reduced by cytochalasin B. These results suggested that c-Abl was involved in the F-actin alteration triggered by L-selectin crosslinking in human neutrophils.  相似文献   

4.
The selectin family of adhesion molecules mediates attachment and rolling of neutrophils to stimulated endothelial cells. This step of the inflammatory response is a prerequisite to firm attachment and extravasation. We have reported that microspheres coated with sialyl Lewis(x) (sLe(x)) interact specifically and roll over E-selectin and P-selectin substrates (Brunk et al., 1996; Rodgers et al 2000). This paper extends the use of the cell-free system to the study of the interactions between L-selectin and sLe(x) under flow. We find that sLe(x) microspheres specifically interact with and roll on L-selectin substrates. Rolling velocity increases with wall shear stress and decreases with increasing L-selectin density. Rolling velocities are fast, between 25 and 225 microm/s, typical of L-selectin interactions. The variability of rolling velocity, quantified by the variance in rolling velocity, scales linearly with rolling velocity. Rolling flux varies with both wall shear stress and L-selectin site density. At a density of L-selectin of 800 sites/microm(2), the rolling flux of sLe(x) coated microspheres goes through a clear maximum with respect to shear stress at 0.7 dyne/cm(2). This behavior, in which the maintenance and promotion of rolling interactions on selectins requires shear stress above a threshold value, is known as the shear threshold effect. We found that the magnitude of the effect is greatest at an L-selectin density of 800 sites/microm(2) and gradually diminishes with increasing L-selectin site density. Our study is the first to reveal the shear threshold effect with a cell free system and the first to show the dependence of the shear threshold effect on L-selectin site density in a reconstituted system. Our ability to recreate the shear threshold effect in a cell-free system strongly suggests the origin of the effect is in the physical chemistry of L-selectin interaction with its ligand, and largely eliminates cellular features such as deformability or topography as its cause.  相似文献   

5.
L-Selectin on neutrophils as well as inducible E- and P-selectin on endothelium are involved in the recruitment of neutrophils into inflamed tissue. Based on cell attachment assays, L-selectin was suggested to function as a carbohydrate presenting ligand for E- and P-selectin. However, previous affinity isolation experiments with an E-selectin–Ig fusion protein had failed to detect L-selectin among the isolated E-selectin ligands from mouse neutrophils. We show here that L-selectin from human neutrophils, in contrast to mouse neutrophils, can be affinity-isolated as a major ligand from total cell extracts using E-selectin–Ig as affinity probe. Binding of human L-selectin to E-selectin was direct, since purified L-selectin could be reprecipitated with E-selectin–Ig. Recognition of L-selectin was abolished by sialidase-treatment, required Ca2+, and was resistant to treatment with endoglycosidase F. Binding of L-selectin to a P-selectin–Ig fusion protein was not observed. In agreement with the biochemical data, the anti–Lselectin mAb DREG56 inhibited rolling of human neutrophils on immobilized E-selectin–Ig but not on P-selectin–Ig. No such inhibitory effect was seen with the anti–mouse L-selectin mAb MEL14 on mouse neutrophils. Rolling of E-selectin transfectants on purified and immobilized human L-selectin was inhibited by mAb DREG56. We conclude that L-selectin on human neutrophils is a major glycoprotein ligand among very few glycoproteins that can be isolated by an E-selectin affinity matrix. The clear difference between human and mouse L-selectin suggests that E-selectin–binding carbohydrate moieties are attached to different protein scaffolds in different species.  相似文献   

6.
Recently, we showed a correlation between the maturity of hematopoietic stem and progenitor cells during development and rolling efficiency on selectins. These findings motivated us to explore a novel separation that exploits differences in selectin-mediated rolling adhesion between populations of cells. We extend the use of a previously developed cell-free system to study the separation of populations of sialyl Lewis x (sLe(x))-coated microspheres designed to roll with different average velocities on L-selectin chimeric substrates under well-defined flow. Results show that a separation that exploits differences in average rolling velocities between cell or microsphere populations is attainable. Excellent recovery and purity values for the slower rolling, or more desirable, populations are obtained and can be estimated from rolling velocity measurements. We also assess the feasibility of a selectin-mediated separation of adult bone marrow cell populations using previously obtained rolling velocity and rolling flux data for CD34+ and CD34- adult bone marrow cells on L-selectin substrates. We believe that a cell separation mediated by differential rolling adhesion can be used to enrich populations of hematopoietic stem and progenitor cells from an adult bone marrow cell preparation and that this method possesses several major advantages over existing antibody-mediated cell-affinity chromatography technologies.  相似文献   

7.
Two adhesive events critical to efficient recruitment of neutrophils at vascular sites of inflammation are up-regulation of endothelial selectins that bind sialyl Lewis(x) ligands and activation of beta(2)-integrins that support neutrophil arrest by binding ICAM-1. We have previously reported that neutrophils rolling on E-selectin are sufficient for signaling cell arrest through beta(2)-integrin binding of ICAM-1 in a process dependent upon ligation of L-selectin and P-selectin glycoprotein ligand 1 (PSGL-1). Unresolved are the spatial and temporal events that occur as E-selectin binds to human neutrophils and dynamically signals the transition from neutrophil rolling to arrest. Here we show that binding of E-selectin to sialyl Lewis(x) on L-selectin and PSGL-1 drives their colocalization into membrane caps at the trailing edge of neutrophils rolling on HUVECs and on an L-cell monolayer coexpressing E-selectin and ICAM-1. Likewise, binding of recombinant E-selectin to PMNs in suspension also elicited coclustering of L-selectin and PSGL-1 that was signaled via mitogen-activated protein kinase. Binding of recombinant E-selectin signaled activation of beta(2)-integrin to high-avidity clusters and elicited efficient neutrophil capture of beta(2)-integrin ligands in shear flow. Inhibition of p38 and p42/44 mitogen-activated protein kinase blocked the cocapping of L-selectin and PSGL-1 and the subsequent clustering of high-affinity beta(2)-integrin. Taken together, the data suggest that E-selectin is unique among selectins in its capacity for clustering sialylated ligands and transducing signals leading to neutrophil arrest in shear flow.  相似文献   

8.
Selectins play a critical role in initiating leukocyte binding to vascular endothelium. In addition, in vitro experiments have shown that neutrophils use L-selectin to roll on adherent neutrophils, suggesting that they express a nonvascular L-selectin ligand. Using a L- selectin/IgM heavy chain (mu) chimeric protein as an immunocytological probe, we show here that L-selectin can bind to neutrophils, monocytes, CD34+ hematopoietic progenitors, and HL-60 and KG-1 myeloid cells. The interaction between L-selectin and leukocytes was protease sensitive and calcium dependent, and abolished by cell treatment with neuraminidase, chlorate, or O-sialoglycoprotein endopeptidase. These results revealed common features between leukocyte L-selectin ligand and the mucin-like P-selectin glycoprotein ligand 1 (PSGL-1), which mediates neutrophil rolling on P- and E-selectin. The possibility that PSGL-1 could be a ligand for L-selectin was further supported by the ability of P-selectin/mu chimera to inhibit L-selectin/mu binding to leukocytes and by the complete inhibition of both selectin interactions with myeloid cells treated with mocarhagin, a cobra venom metalloproteinase that cleaves the amino terminus of PSGL-1 at Tyr-51. Finally, the abrogation of L- and P-selectin binding to myeloid cells treated with a polyclonal antibody, raised against a peptide corresponding to the amino acid residues 42-56 of PSGL-1, indicated that L- and P-selectin interact with a domain located at the amino- terminal end of PSGL-1. The ability of the anti-PSGL-1 mAb PL-1 to inhibit L- and P-selectin binding to KG-1 cells further supported that possibility. Thus, apart from being involved in neutrophil rolling on P- and E-selectin, PSGL-1 also plays a critical role in mediating neutrophil attachment to adherent neutrophils. Interaction between L- selectin and PSGL-1 may be of major importance for increasing leukocyte recruitment at inflammatory sites.  相似文献   

9.
The strength of anchoring of transmembrane receptors to cytoskeleton and membrane is important in cell adhesion and cell migration. With micropipette suction, we applied pulling forces to human neutrophils adhering to latex beads that were coated with antibodies to CD62L (L-selectin), CD18 (beta2 integrins), or CD45. In each case, the adhesion frequency between the neutrophil and bead was low, and our Monte Carlo simulation indicates that only a single bond was probably involved in every adhesion event. When the adhesion between the neutrophil and bead was ruptured, it was very likely that receptors were extracted from neutrophil surfaces. We found that it took 1-2 s to extract an L-selectin at a force range of 25-45 pN, 1-4 s to extract a beta2 integrin at a force range of 60-130 pN, and 1-11 s to extract a CD45 at a force range of 35-85 pN. Our results strongly support the conclusion that, during neutrophil rolling, L-selectin is unbound from its ligand when the adhesion between neutrophils and endothelium is ruptured.  相似文献   

10.
Ligation and clustering of L-selectin by Ab ("cross-linking") or physiologic ligands results in activation of diverse responses that favor enhanced microvascular sequestration and emigration of neutrophils. The earliest responses include a rise in intracellular calcium, enhanced tyrosine phosphorylation, and activation of extracellular signal-regulated kinases. Additionally, cross-linking of L-selectin induces sustained shape change and activation of beta2 integrins, leading to neutrophil arrest under conditions of shear flow. In this report, we examined several possible mechanisms whereby transmembrane signals from L-selectin might contribute to an increase in the microvascular retention of neutrophils and enhanced efficiency of emigration. In human peripheral blood neutrophils, cross-linking of L-selectin induced alterations in cellular biophysical properties, including a decrease in cell deformability associated with F-actin assembly and redistribution, as well as enhanced adhesion of microspheres bound to beta2 integrins. L-selectin and the beta2 integrin became spatially colocalized as determined by confocal immunofluorescence microscopy and fluorescence resonance energy transfer. We conclude that intracellular signals from L-selectin may enhance the microvascular sequestration of neutrophils at sites of inflammation through a combination of cytoskeletal alterations leading to cell stiffening and an increase in adhesiveness mediated through alterations in beta2 integrins.  相似文献   

11.
Interaction of leukocytes in flow with adherent leukocytes may contribute to their accumulation at sites of inflammation. Using L- selectin immobilized in a flow chamber, a model system that mimics presentation of L-selectin by adherent leukocytes, we characterize ligands for L-selectin on leukocytes and show that they mediate tethering and rolling in shear flow. We demonstrate the presence of L- selectin ligands on granulocytes, monocytes, and myeloid and lymphoid cell lines, and not on peripheral blood T lymphocytes. These ligands are calcium dependent, sensitive to protease and neuraminidase, and structurally distinct from previously described ligands for L-selectin on high endothelial venules (HEV). Differential sensitivity to O-sialo- glycoprotease provides evidence for ligand activity on both mucin-like and nonmucin-like structures. Transfection with fucosyltransferase induces expression of functional L-selectin ligands on both a lymphoid cell line and a nonhematopoietic cell line. L-selectin presented on adherent cells is also capable of supporting tethering and rolling interactions in physiologic shear flow. L-selectin ligands on leukocytes may be important in promoting leukocyte-leukocyte and subsequent leukocyte endothelial interactions in vivo, thereby enhancing leukocyte localization at sites of inflammation.  相似文献   

12.
Glucocorticoids can dampen inflammatory responses by inhibiting neutrophil recruitment to tissue sites. The detailed mechanism by which glucocorticoids exert this affect on neutrophils is unknown. L-selectin is a leukocyte cell surface receptor that is implicated in several steps of neutrophil recruitment. Recently, several studies have shown that systemic treatment of animals and humans with glucocorticoids induces decreased L-selectin expression on neutrophils, suggesting one mechanism by which inflammation may be negatively regulated. However, when neutrophils are treated in vitro with glucocorticoids, no effect on L-selectin expression is observed. Thus, the existence of an additional mediator is plausible. In this study, we investigate whether annexin 1 (ANX1), a recognized second messenger of glucocorticoids, could be such a mediator. We show that ANX1 induces a dose- and time-dependent decrease in L-selectin expression on both peripheral blood neutrophils and monocytes but has no effect on lymphocytes. The loss of L-selectin from neutrophils is due to shedding that is mediated by a cell surface metalloprotease ("sheddase"). Using cell shape and a beta(2) integrin activation epitope, we show that the ANX1-induced shedding of L-selectin appears to occur without overt cell activation. These data may provide the basis for further understanding of mechanisms involved in the down-regulation of inflammatory responses.  相似文献   

13.
The L-selectin adhesion molecule mediates leukocyte recruitment to inflammatory sites and lymphocyte trafficking through the peripheral lymph nodes. In response to leukocyte activation, L-selectin is proteolytically released from the cell surface, disabling leukocytes from the subsequent L-selectin-dependent interactions. We have found that L-selectin shedding is sensitive to sulfhydryl chemistry; it is promoted by thiol-oxidizing or -blocking reagents and inhibited by reducing reagents. Phenylarsine oxide (PAO), a trivalent arsenical that interacts with vicinal dithiols, is most potent in inducing rapid shedding of L-selectin from isolated neutrophils, eosinophils, and lymphocytes as well as from neutrophils in whole blood. PAO does not cause cell activation, nor does it interfere with integrin function or alter the expression of several other cell surface molecules at the low concentrations that induce L-selectin shedding. PAO is not required to enter the cell to induce L-selectin shedding. TAPI-2 ((N-(D,L-[2-(hydroxyaminocarbonyl)-methyl]-4-methylpentanoyl)-L-3-(tert-butyl)-alanyl-l -alanine, 2-aminoethyl amide), which has previously been shown to inhibit the activation-dependent L-selectin shedding, is also capable of inhibiting PAO-induced L-selectin shedding. We hypothesize that PAO-induced L-selectin shedding involves a regulatory molecule, such as protein disulfide isomerase (PDI), an enzyme that plays a role in the formation and rearrangement of disulfide bonds, contains PAO-binding, vicinal dithiol-active sites, and is expressed on the neutrophil surface. Cell surface expression of PDI, L-selectin shedding induced by PDI-blocking Abs and by bacitracin, a known inhibitor of PDI activity, and direct binding of PDI to PAO, provide supporting evidence for this hypothesis.  相似文献   

14.
Prior to extravasation at sites of acute inflammation, neutrophils roll over activated endothelium. Neutrophil rolling is often characterized by the average rolling velocity. An additional dynamic feature of rolling that has been identified but not extensively studied is the fluctuation in the rolling velocity about the average. To analyze this characteristic further, we have measured the instantaneous velocity of bovine neutrophils interacting with lipopolysaccharide-stimulated bovine aortic endothelium at shear stresses of 1, 2, 3, and 4 dynes/cm2. The average velocities are quantitatively similar to those reported for human neutrophils rolling over reconstituted P-selectin at a surface density of 400 sites/microns 2. At all shear stresses tested, the population average variance in the instantaneous velocity is at least 2 orders of magnitude higher than the theoretical variance generated from experimental error, indicating that the neutrophils translate with a nonconstant velocity. Possible sources of the variance are discussed. These include "macroscopic" sources such as topological heterogeneity in the endothelium and microscopic sources, such as inherent stochastic formation and breakage of the receptor-ligand bonds that mediate the rolling. Regardless of the ultimate source of the variance, these results justify the use of mathematical models that incorporate stochastic processes to describe bond formation and breakage between the neutrophil and the endothelium and hence are able to generate variable velocity trajectories.  相似文献   

15.
On inflamed endothelium selectins support neutrophil capture and rolling that leads to firm adhesion through the activation and binding of beta 2 integrin. The primary mechanism of cell activation involves ligation of chemotactic agonists presented on the endothelium. We have pursued a second mechanism involving signal transduction through binding of selectins while neutrophils tether in shear flow. We assessed whether neutrophil rolling on E-selectin led to cell activation and arrest via beta 2integrins. Neutrophils were introduced into a parallel plate flow chamber having as a substrate an L cell monolayer coexpressing E-selectin and ICAM-1 (E/I). At shears >/=0.1 dyne/cm2, neutrophils rolled on the E/I. A step increase to 4.0 dynes/cm2 revealed that approximately 60% of the interacting cells remained firmly adherent, as compared with approximately 10% on L cells expressing E-selectin or ICAM-1 alone. Cell arrest was dependent on application of shear and activation of Mac-1 and LFA-1 to bind ICAM-1. Firm adhesion was inhibited by blocking E-selectin, L-selectin, or PSGL-1 with Abs and by inhibitors to the mitogen-activated protein kinases. A chimeric soluble E-selectin-IgG molecule specifically bound sialylated ligands on neutrophils and activated adhesion that was also inhibited by blocking the mitogen-activated protein kinases. We conclude that neutrophils rolling on E-selectin undergo signal transduction leading to activation of cell arrest through beta 2 integrins binding to ICAM-1.  相似文献   

16.
L-selectin is a cell adhesion molecule that mediates the initial capture (tethering) and subsequent rolling of leukocytes along ligands expressed on endothelial cells. We have previously identified ezrin and moesin as novel binding partners of the 17-amino acid L-selectin tail, but the biological role of this interaction is not known. Here we identify two basic amino acid residues within the L-selectin tail that are required for binding to ezrin-radixinmoesin (ERM) proteins: arginine 357 and lysine 362. L-selectin mutants defective for ERM binding show reduced localization to microvilli and decreased phorbol 12-myristate 13-acetate-induced shedding of the L-selectin ectodomain. Cells expressing these L-selectin mutants have reduced tethering to the L-selectin ligand P-selectin glycoprotein ligand-1, but rolling velocity on P-selectin glycoprotein ligand-1 is not affected. These results suggest that ERM proteins are required for microvillar positioning of L-selectin and that this is important both for leukocyte tethering and L-selectin shedding.  相似文献   

17.
Selectins mediate circulatory leukocyte trafficking to sites of inflammation and trauma, and the extracellular microenvironments at these sites often become acidic. In this study, we investigated the influence of slightly acidic pH on the binding dynamics of selectins (P-, L-, and E-selectin) to P-selectin glycoprotein ligand-1 (PSGL-1) via computational modeling (molecular dynamics) and experimental rolling assays under shear in vitro. The P-selectin/PSGL-1 binding is strengthened at acidic pH, as evidenced by the formation of a new hydrogen bond (seen computationally) and the observed decrease in the rolling velocities of model cells. In the case of L-selectin/PSGL-1 binding dynamics, the binding strength and frequency increase at acidic pH, as indicated by the greater cell-rolling flux of neutrophils and slower rolling velocities of L-selectin-coated microspheres, respectively. The cell flux is most likely due to an increased population of L-selectin in the high-affinity conformation as pH decreases, whereas the velocities are due to increased L-selectin/PSGL-1 contacts. In contrast to P- and L-selectin, the E-selectin/PSGL-1 binding does not exhibit significant changes at acidic pH levels, as shown both experimentally and computationally.  相似文献   

18.
Selectin-ligand interactions mediate the tethering and rolling of circulating leukocytes on vascular surfaces during inflammation and immune surveillance. To support rolling, these interactions are thought to have rapid off-rates that increase slowly as wall shear stress increases. However, the increase of off-rate with force, an intuitive characteristic named slip bonds, is at odds with a shear threshold requirement for selectin-mediated cell rolling. As shear drops below the threshold, fewer cells roll and those that do roll less stably and with higher velocity. We recently demonstrated a low force regime where the off-rate of P-selectin interacting with P-selectin glycoprotein ligand-1 (PSGL-1) decreased with increasing force. This counter-intuitive characteristic, named catch bonds, might partially explain the shear threshold phenomenon. Because L-selectin-mediated cell rolling exhibits a much more pronounced shear threshold, we used atomic force microscopy and flow chamber experiments to determine off-rates of L-selectin interacting with their physiological ligands and with an antibody. Catch bonds were observed at low forces for L-selectin-PSGL-1 interactions coinciding with the shear threshold range, whereas slip bonds were observed at higher forces. These catch-slip transitional bonds were also observed for L-selectin interacting with endoglycan, a newly identified PSGL-1-like ligand. By contrast, only slip bonds were observed for L-selectin-antibody interactions. These findings suggest that catch bonds contribute to the shear threshold for rolling and are a common characteristic of selectin-ligand interactions.  相似文献   

19.
Leukocytes express L-selectin ligands critical for leukocyte-leukocyte interactions at sites of inflammation. The predominant leukocyte L-selectin ligand is P-selectin glycoprotein ligand-1 (PSGL-1), which displays appropriate sialyl Lewis x (sLex)-like carbohydrate determinants for L-selectin recognition. Among the sLex-like determinants expressed by human leukocytes is a unique carbohydrate epitope defined by the HECA-452 mAb. The HECA-452 Ag is a critical component of L-selectin ligands expressed by vascular endothelial cells. However, HECA-452 Ag expression on human leukocyte L-selectin ligands has not been assessed. In this study, the HECA-452 mAb blocked 88-99% of neutrophil rolling on, or attachment to, adherent cells expressing L-selectin in multiple experimental systems. A function-blocking anti-PSGL-1 mAb also inhibited L-selectin binding to neutrophils by 89-98%. In addition, the HECA-452 and anti-PSGL-1 mAbs blocked the majority of P-selectin binding to neutrophils. Western blot analysis revealed that PSGL-1 immunoprecipitated from neutrophils displayed HECA-452 mAb-reactive determinants and that PSGL-1 was the predominant scaffold for HECA-452 Ag display. Leukocyte L-selectin ligands also contained sulfated determinants since culturing ligand-bearing cells with NaClO3 abrogated L-selectin binding. Consistent with this, human neutrophils expressed mRNA encoding five different sulfotransferases associated with the generation of selectin ligands: CHST1, CHST2, CHST3, TPST1, and HEC-GlcNAc6ST. Therefore, the HECA-452-defined carbohydrate determinant displayed on PSGL-1 represented the predominant L-selectin and P-selectin ligand expressed by neutrophils.  相似文献   

20.
Lymphocytes from the blood home to secondary lymphoid tissues through a process of tethering, rolling, firm adhesion and transmigration. Tethering and rolling of lymphocytes is mediated by the interaction of L-selectin on lymphocytes with sulphated ligands expressed by the specialized endothelial cells of high endothelial venules (HEVs). The sulphate-dependent monoclonal antibody MECA79 stains HEVs in peripheral lymph nodes and recognizes the complex of HEV ligands for L-selectin termed peripheral node addressin. High endothelial cell GlcNAc-6-sulphotransferase/L-selectin ligand sulphotransferase is a HEV-expressed sulphotransferase that contributes to the formation of the MECA79 epitope and L-selectin ligands on lymph node HEVs. MECA79-reactive vessels are also common at sites of chronic inflammation, suggesting mechanistic parallels between lymphocyte homing and inflammatory trafficking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号