首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sought to evaluate the extent of the contribution of transposable elements (TEs) to human microRNA (miRNA) genes along with the evolutionary dynamics of TE-derived human miRNAs. We found 55 experimentally characterized human miRNA genes that are derived from TEs, and these TE-derived miRNAs have the potential to regulate thousands of human genes. Sequence comparisons revealed that TE-derived human miRNAs are less conserved, on average, than non-TE-derived miRNAs. However, there are 18 TE-derived miRNAs that are relatively conserved, and 14 of these are related to the ancient L2 and MIR families. Comparison of miRNA vs. mRNA expression patterns for TE-derived miRNAs and their putative target genes showed numerous cases of anti-correlated expression that are consistent with regulation via mRNA degradation. In addition to the known human miRNAs that we show to be derived from TE sequences, we predict an additional 85 novel TE-derived miRNA genes. TE sequences are typically disregarded in genomic surveys for miRNA genes and target sites; this is a mistake. Our results indicate that TEs provide a natural mechanism for the origination miRNAs that can contribute to regulatory divergence between species as well as a rich source for the discovery of as yet unknown miRNA genes.  相似文献   

2.
3.

Background  

Transposable elements (TEs) are abundant genomic sequences that have been found to contribute to genome evolution in unexpected ways. Here, we characterize the evolutionary and functional characteristics of TE-derived human genome regulatory sequences uncovered by the high throughput mapping of DNaseI-hypersensitive (HS) sites.  相似文献   

4.
5.
6.
7.
The evolutionary implications of transposable element (TE) influences on gene regulation are explored here. An historical perspective is presented to underscore the importance of TE influences on gene regulation with respect to both the discovery of TEs and the early conceptualization of their potential impact on host genome evolution. Evidence that points to a role for TEs in host gene regulation is reviewed, and comparisons between genome sequences are used to demonstrate the fact that TEs are particularly lineage-specific components of their host genomes. Consistent with these two properties of TEs, regulatory effects and evolutionary specificity, human-mouse genome wide sequence comparisons reveal that the regulatory sequences that are contributed by TEs are exceptionally lineage specific. This suggests a particular mechanism by which TEs may drive the diversification of gene regulation between evolutionary lineages.  相似文献   

8.
9.
Fablet M  Rebollo R  Biémont C  Vieira C 《Gene》2007,390(1-2):84-91
It has now been established that transposable elements (TEs) make up a variable, but significant proportion of the genomes of all organisms, from Bacteria to Vertebrates. However, in addition to their quantitative importance, there is increasing evidence that TEs also play a functional role within the genome. In particular, TE regulatory regions can be viewed as a large pool of potential promoter sequences for host genes. Studying the evolution of regulatory region of TEs in different genomic contexts is therefore a fundamental aspect of understanding how a genome works. In this paper, we first briefly describe what is currently known about the regulation of TE copy number and activity in genomes, and then focus on TE regulatory regions and their evolution. We restrict ourselves to retrotransposons, which are the most abundant class of eukaryotic TEs, and analyze their evolution and the subsequent consequences for host genomes. Particular attention is paid to much-studied representatives of the Vertebrates and Invertebrates, Homo sapiens and Drosophila melanogaster, respectively, for which high quality sequenced genomes are available.  相似文献   

10.
11.
12.
13.
Transposable elements (TEs) are sequences currently or historically mobile, and are present across all eukaryotic genomes. A growing interest in understanding the regulation and function of TEs has revealed seemingly dichotomous roles for these elements in evolution, development, and disease. On the one hand, many gene regulatory networks owe their organization to the spread of cis-elements and DNA binding sites through TE mobilization during evolution. On the other hand, the uncontrolled activity of transposons can generate mutations and contribute to disease, including cancer, while their increased expression may also trigger immune pathways that result in inflammation or senescence. Interestingly, TEs have recently been found to have novel essential functions during mammalian development. Here, the function and regulation of TEs are discussed, with a focus on LINE1 in mammals. It is proposed that LINE1 is a beneficial endogenous dual regulator of gene expression and genomic diversity during mammalian development, and that both of these functions may be detrimental if deregulated in disease contexts.  相似文献   

14.
Recent genome sequencing efforts have revealed how extensively transposable elements (TEs) have contributed to the shaping of present day plant genomes. DNA transposons associate preferentially with the euchromatic or genic component of plant genomes and have had the opportunity to interact intimately with the genes of the plant host. These interactions have resulted in TEs acquiring host sequences, forming chimeric genes through exon shuffling, replacing regulatory sequences, mobilizing genes around the genome, and contributing genes to the host. The close interaction of transposons with genes has also led to the evolution of intricate cellular mechanisms for silencing transposon activity. Transposons have thus become important subjects of study in understanding epigenetic regulation and, in cases where transposons have amplified to high numbers, how to escape that regulation.  相似文献   

15.
Lerat E  Sémon M 《Gene》2007,396(2):303-311
Transposable elements (TEs) are genomic sequences able to replicate themselves, and to move from one chromosomal position to another within the genome. Many TEs contain their own regulatory regions, which means that they may influence the expression of neighboring genes. TEs may also be activated and transcribed in various cancers. We therefore tested whether gene expression in normal and tumor tissues is influenced by the neighboring TEs. To do this, we associated all human genes to the nearest TEs. We analyzed the expression of these genes in normal and tumor tissues using SAGE and EST data, and related this to the presence and type of TEs in their vicinity. We confirmed that TEs tend to be located in antisense orientation relative to their hosting genes. We found that the average number of tissues where a gene is expressed varies depending on the type of TEs located near the gene, and that the difference in expression level between normal and tumor tissues is greatest for genes that host SINE elements. This deregulation increases with the number of SINE copies in the gene vicinity. This suggests that SINE elements might contribute to the cascade of gene deregulation in cancer cells.  相似文献   

16.
17.
《Trends in genetics : TIG》2023,39(8):624-638
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号