首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
* Information on the genetic variation of plant response to elevated CO(2) (e[CO(2)]) is needed to understand plant adaptation and to pinpoint likely evolutionary response to future high atmospheric CO(2) concentrations. * Here, quantitative trait loci (QTL) for above- and below-ground tree growth were determined in a pedigree - an F(2) hybrid of poplar (Populus trichocarpa and Populus deltoides), following season-long exposure to either current day ambient CO(2) (a[CO(2)]) or e[CO(2)] at 600 microl l(-1), and genotype by environment interactions investigated. * In the F(2) generation, both above- and below-ground growth showed a significant increase in e[CO(2)]. Three areas of the genome on linkage groups I, IX and XII were identified as important in determining above-ground growth response to e[CO(2)], while an additional three areas of the genome on linkage groups IV, XVI and XIX appeared important in determining root growth response to e[CO(2)]. * These results quantify and identify genetic variation in response to e[CO(2)] and provide an insight into genomic response to the changing environment.  相似文献   

2.
Exposure to an elevated CO(2) concentration ([CO(2)]) generally decreases leaf N content per unit area (N(area)) and stomatal density, and increases leaf thickness. Mature leaves can 'sense' elevated [CO(2)] and this regulates stomatal development of expanding leaves (systemic regulation). It is unclear if systemic regulation is involved in determination of leaf thickness and N(area)-traits that are significantly correlated with photosynthetic capacity. A cuvette system was used whereby [CO(2)] around mature leaves was controlled separately from that around expanding leaves. Expanding leaves of poplar (Populus trichocarpa×P. deltoides) seedlings were exposed to elevated [CO(2)] (720 μmol mol(-1)) while the remaining mature leaves inside the cuvette were under ambient [CO(2)] of 360 μmol mol(-1). Reverse treatments were performed. Exposure of newly developing leaves to elevated [CO(2)] increased their thickness, but when mature leaves were exposed to elevated [CO(2)] the increase in thickness of new leaves was less pronounced. The largest response to [CO(2)] was reflected in the palisade tissue thickness (as opposed to the spongy tissue) of new leaves. The N(area) of new leaves was unaffected by the local [CO(2)] where the new leaves developed, but decreased following the exposure of mature leaves to elevated [CO(2)]. The volume fraction of mesophyll cells compared with total leaf and the mesophyll cell density changed in a manner similar to the response of N(area). These results suggest that N(area) is controlled independently of the leaf thickness, and suggest that N(area) is under systemic regulation by [CO(2)] signals from mature leaves that control mesophyll cell division.  相似文献   

3.
The genetic nature of tree adaptation to drought stress was examined by utilizing variation in the drought response of a full-sib second generation (F(2)) mapping population from a cross between Populus trichocarpa (93-968) and P. deltoides Bart (ILL-129) and known to be highly divergent for a vast range of phenotypic traits. We combined phenotyping, quantitative trait loci (QTL) analysis and microarray experiments to demonstrate that 'genetical genomics' can be used to provide information on adaptation at the species level. The grandparents and F(2) population were subjected to soil drying, and contrasting responses to drought across genotypes, including leaf coloration, expansion and abscission, were observed, and QTL for these traits mapped. A subset of extreme genotypes exhibiting extreme sensitivity and insensitivity to drought on the basis of leaf abscission were defined, and microarray experiments conducted on these genotypes and the grandparent species. The extreme genotype groups induced a different set of genes: 215 and 125 genes differed in their expression response between groups in control and drought, respectively, suggesting species adaptation at the gene expression level. Co-location of differentially expressed genes with drought-specific and drought-responsive QTLs was examined, and these may represent candidate genes contributing to the variation in drought response.  相似文献   

4.
Ewert F 《Annals of botany》2004,93(6):619-627
BACKGROUND AND AIMS: The problem of increasing CO(2) concentration [CO(2)] and associated climate change has generated much interest in modelling effects of [CO(2)] on plants. While variation in growth and productivity is closely related to the amount of intercepted radiation, largely determined by leaf area index (LAI), effects of elevated [CO(2)] on growth are primarily via stimulation of leaf photosynthesis. Variability in LAI depends on climatic and growing conditions including [CO(2)] concentration and can be high, as is known for agricultural crops which are specifically emphasized in this report. However, modelling photosynthesis has received much attention and photosynthesis is often represented inadequately detailed in plant productivity models. Less emphasis has been placed on the modelling of leaf area dynamics, and relationships between plant growth, elevated [CO(2)] and LAI are not well understood. This Botanical Briefing aims at clarifying the relative importance of LAI for canopy assimilation and growth in biomass under conditions of rising [CO(2)] and discusses related implications for process-based modelling. MODEL: A simulation exercise performed for a wheat crop demonstrates recent experimental findings about canopy assimilation as affected by LAI and elevation of [CO(2)]. While canopy assimilation largely increases with LAI below canopy light saturation, effects on canopy assimilation of [CO(2)] elevation are less pronounced and tend to decline as LAI increases. Results from selected model-testing studies indicate that simulation of LAI is often critical and forms an important source of uncertainty in plant productivity models, particularly under conditions of limited resource supply. CONCLUSIONS: Progress in estimating plant growth and productivity under rising [CO(2)] is unlikely to be achieved without improving the modelling of LAI. This will depend on better understanding of the processes of substrate allocation, leaf area development and senescence, and the role of LAI in controlling plant adaptation to environmental changes.  相似文献   

5.
We have mapped quantitative trait loci (QTLs) for commercially important traits (stem growth and form) and an adaptive trait (spring leaf flush) in a Populus F(2) generation derived from a cross between interspecific F(1) hybrids (P. trichocarpa X P. deltoides). Phenotypic data were collected over a 2-year period from a replicated clonal trial containing ramets of the parental, F(1), and F(2) trees. Contrary to the assumptions of simple polygenic models of quantitative trait inheritance, 1-5 QTLs of large effect are responsible for a large portion of the genetic variance in each of the traits measured. For example, 44.7% of the genetic variance in stem volume after 2 years of growth is controlled by just two QTLs. QTLs governing stem basal area were found clustered with QTLs for sylleptic branch leaf area, sharing similar chromosomal position and mode of action and suggesting a pleiotropic effect of QTLs ultimately responsible for stem diameter growth.  相似文献   

6.
Leaf expansion in the fast-growing tree, Populus x euramericana was stimulated by elevated [CO(2)] in a closed-canopy forest plantation, exposed using a free air CO(2) enrichment technique enabling long-term experimentation in field conditions. The effects of elevated [CO(2)] over time were characterized and related to the leaf plastochron index (LPI), and showed that leaf expansion was stimulated at very early (LPI, 0-3) and late (LPI, 6-8) stages in development. Early and late effects of elevated [CO(2)] were largely the result of increased cell expansion and increased cell production, respectively. Spatial effects of elevated [CO(2)] were also marked and increased final leaf size resulted from an effect on leaf area, but not leaf length, demonstrating changed leaf shape in response to [CO(2)]. Leaves exhibited a basipetal gradient of leaf development, investigated by defining seven interveinal areas, with growth ceasing first at the leaf tip. Interestingly, and in contrast to other reports, no spatial differences in epidermal cell size were apparent across the lamina, whereas a clear basipetal gradient in cell production rate was found. These data suggest that the rate and timing of cell production was more important in determining leaf shape, given the constant cell size across the leaf lamina. The effect of elevated [CO(2)] imposed on this developmental gradient suggested that leaf cell production continued longer in elevated [CO(2)] and that basal increases in cell production rate were also more important than altered cell expansion for increased final leaf size and altered leaf shape in elevated [CO(2)].  相似文献   

7.
Variation in atmospheric [CO(2)] is a prominent feature of the environmental history over which vascular plants have evolved. Periods of falling and low [CO(2)] in the palaeo-record appear to have created selective pressure for important adaptations in modern plants. Today, rising [CO(2)] is a key component of anthropogenic global environmental change that will impact plants and the ecosystem goods and services they deliver. Currently, there is limited evidence that natural plant populations have evolved in response to contemporary increases in [CO(2)] in ways that increase plant productivity or fitness, and no evidence for incidental breeding of crop varieties to achieve greater yield enhancement from rising [CO(2)]. Evolutionary responses to elevated [CO(2)] have been studied by applying selection in controlled environments, quantitative genetics and trait-based approaches. Findings to date suggest that adaptive changes in plant traits in response to future [CO(2)] will not be consistently observed across species or environments and will not be large in magnitude compared with physiological and ecological responses to future [CO(2)]. This lack of evidence for strong evolutionary effects of elevated [CO(2)] is surprising, given the large effects of elevated [CO(2)] on plant phenotypes. New studies under more stressful, complex environmental conditions associated with climate change may revise this view. Efforts are underway to engineer plants to: (i) overcome the limitations to photosynthesis from today's [CO(2)] and (ii) benefit maximally from future, greater [CO(2)]. Targets range in scale from manipulating the function of a single enzyme (e.g. Rubisco) to adding metabolic pathways from bacteria as well as engineering the structural and functional components necessary for C(4) photosynthesis into C(3) leaves. Successfully improving plant performance will depend on combining the knowledge of the evolutionary context, cellular basis and physiological integration of plant responses to varying [CO(2)].  相似文献   

8.
Accurately predicting plant function and global biogeochemical cycles later in this century will be complicated if stomatal conductance (g(s)) acclimates to growth at elevated [CO(2)], in the sense of a long-term alteration of the response of g(s) to [CO(2)], humidity (h) and/or photosynthetic rate (A). If so, photosynthetic and stomatal models will require parameterization at each growth [CO(2)] of interest. Photosynthetic acclimation to long-term growth at elevated [CO(2)] occurs frequently. Acclimation of g(s) has rarely been examined, even though stomatal density commonly changes with growth [CO(2)]. Soybean was grown under field conditions at ambient [CO(2)] (378 micromol mol(-1)) and elevated [CO(2)] (552 micromol mol(-1)) using free-air [CO(2)] enrichment (FACE). This study tested for stomatal acclimation by parameterizing and validating the widely used Ball et al. model (1987, Progress in Photosynthesis Research, vol IV, 221-224) with measurements of leaf gas exchange. The dependence of g(s) on A, h and [CO(2)] at the leaf surface was unaltered by long-term growth at elevated [CO(2)]. This suggests that the commonly observed decrease in g(s) under elevated [CO(2)] is due entirely to the direct instantaneous effect of [CO(2)] on g(s) and that there is no longer-term acclimation of g(s) independent of photosynthetic acclimation. The model accurately predicted g(s) for soybean growing under ambient and elevated [CO(2)] in the field. Model parameters under ambient and elevated [CO(2)] were indistinguishable, demonstrating that stomatal function under ambient and elevated [CO(2)] could be modelled without the need for parameterization at each growth [CO(2)].  相似文献   

9.
Genetical metabolomics [metabolite profiling combined with quantitative trait locus (QTL) analysis] has been proposed as a new tool to identify loci that control metabolite abundances. This concept was evaluated in a case study with the model tree Populus. Using HPLC, the peak abundances were analyzed of 15 closely related flavonoids present in apical tissues of two full-sib poplar families, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24, and correlation and QTL analysis were used to detect flux control points in flavonoid biosynthesis. Four robust metabolite quantitative trait loci (mQTL), associated with rate-limiting steps in flavonoid biosynthesis, were mapped. Each mQTL was involved in the flux control to one or two flavonoids. Based on the identities of the affected metabolites and the flavonoid pathway structure, a tentative function was assigned to three of these mQTL, and the corresponding candidate genes were mapped. The data indicate that the combination of metabolite profiling with QTL analysis is a valuable tool to identify control points in a complex metabolic pathway of closely related compounds.  相似文献   

10.
Flash flooding of young rice plants is a common problem forrice farmers in south and south-east Asia. It severely reducesgrain yield and increases the unpredictability of cropping.The inheritance and expression of traits associated with submergencestress tolerance at the seedling stage are physiologically andgenetically complex. We exploited naturally occurring differencesbetween certain rice lines in their tolerance to submergenceand used quantitative trait loci (QTL) mapping to improve understandingof the genetic and physiological basis of submergence tolerance.Three rice populations, each derived from a single cross betweentwo cultivars differing in their response to submergence, wereused to identify QTL associated with plant survival and variouslinked traits. These included total shoot elongation under water,the extent of stimulation of shoot elongation caused by submergence,a visual submergence tolerance score, and leaf senescence underdifferent field conditions, locations and years. Several majorQTL determining plant survival, plant height, stimulation ofshoot elongation, visual tolerance score and leaf senescenceeach mapped to the same locus on chromosome 9. These QTL weredetected consistently in experiments across all years and inthe genetic backgrounds of all three mapping populations. SecondaryQTL influencing tolerance were also identified and located onchromosomes 1, 2, 5, 7, 10 and 11. These QTL were specific toparticular traits, environments, or genetic backgrounds. Allidentified QTL contributed to increased submergence tolerancethrough their effects on decreased underwater shoot elongationor increased maintenance of chlorophyll levels, or on both.These findings establish the foundations of a marker-assistedscheme for introducing submergence tolerance into agriculturallydesirable cultivars of rice.  相似文献   

11.
There is substantial genetic variation for drought adaption in pearl millet in terms of traits controlling plant water use. It is important to understand genomic regions responsible for these traits. Here, F7 recombinant inbred lines were used to identify quantitative trait loci (QTL) and allelic interactions for traits affecting plant water use, and their relevance is discussed for crop productivity in water‐limited environments. Four QTL contributed to increased transpiration rate under high vapour pressure deficit (VPD) conditions, all with alleles from drought‐sensitive parent ICMB 841. Of these four QTL, a major QTL (35.7%) was mapped on linkage group (LG) 6. The alleles for 863B at this QTL decreased transpiration rate and this QTL co‐mapped to a previously detected LG 6 QTL, with alleles from 863B for grain weight and panicle harvest index across severe terminal drought stress environments. This provided additional support for a link between water saving from a lower transpiration rate under high VPD and drought tolerance. 863B alleles in this same genomic region also increased shoot weight, leaf area and total transpiration under well‐watered conditions. One unexpected outcome was reduced transpiration under high VPD (15%) from the interaction of two alleles for high VPD transpiration (LG 6 (B), 40.7) and specific leaf mass and biomass (LG 7 (A), 35.3), (A, allele from ICMB 841, B, allele from 863B, marker position). The LG 6 QTL appears to combine alleles for growth potential, beneficial for non‐stress conditions, and for saving water under high evaporative demand, beneficial under stressful conditions. Mapping QTL for water‐use traits, and assessing their interactions offers considerable potential for improving pearl millet adaptation to specific stress conditions through physiology‐informed marker‐assisted selection.  相似文献   

12.
大白菜部分形态性状的QTL定位与分析   总被引:13,自引:0,他引:13  
于拴仓  王永健  郑晓鹰 《遗传学报》2003,30(12):1153-1160
应用352个标记位点的大白菜AFLP和RAPD图谱和一套栽培品种间杂交获得的重组自交系群体,采用复合区间作图的方法对大白菜9个形态性状进行QTL定位及遗传效应研究。在14个连锁群上检测到50个QTL:其中控制株型的QTL有5个;控制株高的QTL有6个;控制开展度的QTL有5个;控制最大叶长的QTL有7个;控制最大叶宽的QTL有4个;控制叶形指数的QTL有6个;控制中肋长的QTL有7个;控制中肋宽的QTL有4个;控制抽苔的QTL有6个。另外,估算了单个QTL的遗传贡献率和加性效应。这将为大白菜品种改良中形态性状的分子标记辅助选择提供理论依据。  相似文献   

13.
14.
We examined the genetic variation of leaf morphology and development in the 2-yr-old replicated plantation of an interspecific hybrid pedigree of Populus trichocarpa T. & G. and P. deltoides Marsh. via both molecular and quantitative genetic methods. Leaf traits chosen were those that show pronounced differences between the original parents, including leaf size, shape, orientation, color, structure, petiole size, and petiole cross section. Leaves were sampled from the current terminal, proleptic, and sylleptic branches. In the F2 generation, leaf traits were all significantly different among genotypes, but with significant effects due to genotype X crown-position interaction. Variation in leaf pigmentation, petiole length. And petiole length proportion appeared to be under the control of few quantitative trait loci (QTLs). More QTLs were associated with single leaf area, leaf shape, lamina angle, abaxial color, and petiole flatness, and in these traits the number of QTLs varied among crown positions. In general, the estimates of QTL numbers from Wright's biometric method were close to those derived from molecular markers. For those traits with few underlying QTLs, a single marker interval could explain from 30 to 60% of the observed phenotypic variance. For multigenic traits, certain markers contributed more substantially to the observed variation than others. Genetic cluster analysis showed developmentally related traits to be more strongly associated with each other than with unrelated traits. This finding was also supported by the QTL mapping. For example, the same chromosomal segment of linkage group L seemed to account for 20% of the phenotypic variation of all dimension-related traits, leaf size, petiole length. and midrib angle. In both traits. the P. deltoides alleles had positive effects and were dominant to the P. trichocarpa alleles. Similar relationships were also found for lamina angle. abaxial greenness, and petiole.  相似文献   

15.
16.
刺槐叶片可塑生长的密度依赖性   总被引:1,自引:0,他引:1  
为了探明刺槐叶片性状对种植密度的依赖性,通过刺槐田间栽培试验,研究了刺槐叶片可塑生长的密度依赖性以及主要叶片性状因子之间的关系.结果表明,不同种植密度条件下刺槐叶片厚度均无显著差异,但叶面积、叶绿素含蜃、叶片干重、比叶面积、叶干物质含量和叶片N含量差异显著,表明不同种植密度条件下刺槐叶性因子参数的变异较大,刺槐叶片性状对密度的依赖性较强.叶干重、叶厚度和叶片干物质含量均随种植密度的降低而呈增加趋势,叶片干物质含量与种植密度的相关性达到显著水平(P<0.01),而叶干重、叶厚度与种植密度的相关性不显著(P>0.05).比叶而积和叶片N含鼍均随种植密度的降低而降低,表明刺槐各叶性因子之间对种植密度的依赖性差异明显.对刺槐各叶性因子的相关分析表明,不同种植密度条件下各叶性因子之间的相关性及其强弱均存在差别,表明种植密度是影响刺槐叶性因子变异及叶性因子之间关系的因素之一.叶性特征对种植密度响应存在差异的主要原因是叶性因子之间的协同变化、刺槐生长微环境的差异和刺槐间竞争强度的差异,刺槐不同叶性因子之间的协调平衡和对种植密度响应程度与方向的差异表明了刺槐对其生长环境的适应.  相似文献   

17.
We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (W(P)) to elevated CO(2) concentration ([CO(2)]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO(2) partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO(2)]. The mean ratio of final plant dry mass at elevated to ambient [CO(2)] (M(E)/M(A)) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in M(E)/M(A) among legume species (0.92-2.35), whereas nonlegumes varied much less (1.21-1.29). Variation among legume species in M(E)/M(A) was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. W(P) increased markedly in response to elevated [CO(2)] in all species. The ratio of intercellular to ambient CO(2) partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO(2)], as did carbon isotope discrimination, suggesting that W(P) should increase proportionally for a given increase in atmospheric [CO(2)]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO(2)] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO(2)].  相似文献   

18.
The response of plant species to future atmospheric carbon dioxide concentrations [CO(2)] has been determined for hundreds of crop and tree species. However, no data are currently available regarding the response of invasive weedy species to past or future atmospheric [CO(2)]. In the current study, the growth of six species which are widely recognized as among the most invasive weeds in the continental United States, Canada thistle (Cirsium arvense (L.) Scop.), field bindweed (Convolvulus arvensis L.), leafy spurge (Euphorbia esula L.), perennial sowthistle (Sonchus arvensis L.), spotted knapweed (Centaurea maculosa Lam.), and yellow star thistle (Centaurea solstitialis L.) were grown from seed at either 284, 380 or 719 micromol mol(-1) [CO(2)] until the onset of sexual reproduction (i.e. the vegetative period). The CO(2) concentrations corresponded roughly to the CO(2) concentrations which existed at the beginning of the 20th century, the current [CO(2)], and the future [CO(2)] projected for the end of the 21st century, respectively. The average stimulation of plant biomass among invasive species from current to future [CO(2)] averaged 46%, with the largest response (+72%) observed for Canada thistle. However, the growth response among these species to the recent [CO(2)] increase during the 20th century was significantly higher, averaging 110%, with Canada thistle again (+180%) showing the largest response. Overall, the CO(2)-induced stimulation of growth for these species during the 20th century (285-382 micromol mol(-1)) was about 3x greater than for any species examined previously. Although additional data are needed, the current study suggests the possibility that recent increases in atmospheric CO(2) during the 20th century may have been a factor in the selection of these species.  相似文献   

19.
Plant growth can be studied at different organizational levels, varying from cell, leaf, and shoot to the whole plant. The early growth of seedlings is important for the plant's establishment and its eventual success. Wheat (Triticum aestivum, genome AABBDD) seedlings exhibit a low early growth rate or early vigor. The germplasm of wheat is limited. Wild relatives constitute a source of genetic variation. We explored the physiological and genetic relationships among a range of early vigor traits in Aegilops tauschii, the D-genome donor. A genetic map was constructed with amplified fragment-length polymorphism and simple sequence repeat markers, and quantitative trait loci (QTL) analysis was performed on the F(4) population of recombinant inbred lines derived from a cross between contrasting accessions. The genetic map consisted of 10 linkage groups, which were assigned to the seven chromosomes and covered 68% of the D genome. QTL analysis revealed 87 mapped QTLs (log of the odds >2.65) in clusters, 3.1 QTLs per trait, explaining 32% of the phenotypic variance. Chromosomes 1D, 4D, and 7D harbored QTLs for relative growth rate, biomass allocation, specific leaf area, leaf area ratio, and unit leaf rate. Chromosome 2D covered QTLs for rate and duration of leaf elongation, cell production rate, and cell length. Chromosome 5D harbored QTLs for the total leaf mass and area and growth rate of the number of leaves and tillers. The results show that several physiological correlations between growth traits have a genetic basis. Genetic links between traits are not absolute, opening perspectives for identification of favorable alleles in A. tauschii to improve early vigor in wheat.  相似文献   

20.
The atmospheric CO(2) concentration [CO(2)] has been increasing markedly since the industrial revolution and is predicted to reach 500-1,000 μmol mol(-1) by the end of this century. Although the short-term and acclimatory responses to elevated [CO(2)] have been well studied, much less is understood about evolutionary responses to high [CO(2)]. We studied phenotypic and genetic differences in Plantago asiatica populations around a natural CO(2) spring, where [CO(2)] has been consistently high over an evolutionary time scale. Our common-garden experiment revealed that plants transferred from habitats with higher [CO(2)] had higher relative growth rates, greater leaf to root ratios, lower photosynthetic rates, and lower stomatal conductance. The habitat-dependent differences were partly heritable because a similar trend of leaf to root ratio was found among their offsprings. Genetic analyses indicated that selfing or biparental inbreeding might promote local adaptation in areas with high [CO(2)] despite substantial gene flow across the [CO(2)] gradient. These results indicate that phenotypic and genetic differences have occurred between high and normal [CO(2)] populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号