首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Curcuminoids were isolated from Curcuma longa and their pyrazole and isoxazole analogues were synthesized and evaluated for antioxidant, COX-1/COX-2 inhibitory and anti-inflammatory activities. The designed analogues significantly enhance COX-2/COX-1 selectivity and possess significant anti-inflammatory activity in carrageenan induced rat paw edema assay. Pyrazole, isoxazole analogues of curcumin (4 and 7) exhibited higher antioxidant activity than trolox. Molecular docking study revealed the binding orientations of curcumin analogues in the active sites of COX and thereby helps to design novel potent inhibitors.  相似文献   

3.
It is recently proposed that compounds with equal capabilities of inhibiting COX and 5-LOX, both are key enzymes involved in the arachidonic acid (AA) cascade, are expected to be safer non-steroidal anti-inflammatory drugs (NSAIDs). To dig out helpful information in designing dual functional inhibitors against the two enzymes, homology modeling, molecular dynamics (MD) simulations, automated docking, and 3D-QSAR analyses were performed in this study on 21 COX-2/5-LOX dual inhibitors, namely, 7-tert-butyl-2,3-dihydro-3,3-dimethylbenzofuran (DHDMBF) analogues. A 3D-model of 5-LOX was built based on the high-resolution X-ray structure of rabbit reticulocyte 15-lipoxygenase. Molecular docking was then applied to locate the binding orientations and conformations of DHDMBF analogues with COX-2 and 5-LOX, respectively, leading to highly predictive CoMFA models constructed on the basis of the binding conformations with q2 values of 0.782 and 0.634 for COX-2 and 5-LOX, respectively. In addition, CoMFA field distributions were found in good agreement with the structural characteristics of the corresponding binding sites. Both the docking simulations and QSAR analyses suggest that new potent dual inhibitors should share a structural feature with a moderately bulky group at R2 position and a rather negatively charged group around the position of the carbonyl group of DHDMBFs. Therefore, the final 3D-QSAR models and the information of the inhibitor-enzyme interaction should be useful in developing new NSAIDs as anti-inflammation drugs with favorable safety profile.  相似文献   

4.
5.
Topoisomerases (Topos) are very important protein targets for drug design in cancer treatment. Human Topo type IIα (hTopo IIα) has been widely studied experimentally and theoretically. Here, we performed protein rigid/flexible side-chain docking to study a set of thirty-nine 3-substituted-2,6-piperazindiones (labelled 1a, (R)-[(2–20)a] and (S)-[(2–20)b]) derived from α-amino acids. To explain the ligand–protein complexes at the electronic level [using the highest occupied and the lowest unoccupied molecular orbitals (HOMO and LUMO) energies], density functional theory calculations were carried out. Finally, to show adenosine triphosphate (ATP) binding-site constituents, the Q-SiteFinder program was used. The docking results showed that all of the test compounds bind to the ATP-binding site on hTopo IIα. Recognition is mediated by the formation of several hydrogen bond acceptors or donators. This site was the largest (631 Å3) according to the Q-SiteFinder program. When using the protein rigid docking protocol, compound 13a derived from (R)-Lys showed the highest affinity. However, when a flexible side-chain docking protocol was used, the compound with the highest affinity was 16a, derived from (R)-Trp. Frontier molecular orbital studies showed that the HOMO of the ligand interacts with the LUMO located at side-chain residues from the protein-binding site. The HOMO of the binding site interacts with the LUMO of the ligand. We conclude that some ligand properties including the hindrance effect, hydrogen bonds, π–π interactions and stereogenic centres are important for the ligand to be recognised by the ATP-binding site of hTopo IIα.  相似文献   

6.
Calcium–calmodulin-dependent protein kinase IV (CAMK4) plays significant role in the regulation of calcium-dependent gene expression, and thus, it is involved in varieties of cellular functions such as cell signaling and neuronal survival. On the other hand, curcumin, a naturally occurring yellow bioactive component of turmeric possesses wide spectrum of biological actions, and it is widely used to treat atherosclerosis, diabetes, cancer, and inflammation. It also acts as an antioxidant. Here, we studied the interaction of curcumin with human CAMK4 at pH 7.4 using molecular docking, molecular dynamics (MD) simulations, fluorescence binding, and surface plasmon resonance (SPR) methods. We performed MD simulations for both neutral and anionic forms of CAMK4-curcumin complexes for a reasonably long time (150 ns) to see the overall stability of the protein–ligand complex. Molecular docking studies revealed that the curcumin binds in the large hydrophobic cavity of kinase domain of CAMK4 through several hydrophobic and hydrogen-bonded interactions. Additionally, MD simulations studies contributed in understanding the stability of protein–ligand complex system in aqueous solution and conformational changes in the CAMK4 upon binding of curcumin. A significant increase in the fluorescence intensity at 495 nm was observed (λexc = 425 nm), suggesting a strong interaction of curcumin to the CAMK4. A high binding affinity (KD = 3.7 × 10?8 ± .03 M) of curcumin for the CAMK4 was measured by SPR further indicating curcumin as a potential ligand for the CAMK4. This study will provide insights into designing a new inspired curcumin derivatives as therapeutic agents against many life-threatening diseases.  相似文献   

7.
Aromatase, catalyzing final step of estrogen biosynthesis, is considered a key target for the development of drug against estrogen-dependent breast cancer (EDBC). Identification and development of naturally occurring compounds, such as flavonoids, as drugs against EDBC is in demand due to their lesser toxicity when compared to those of synthetic ones. Thus, a three-dimensional quantitative structure–activity relationship, using comparative molecular field analysis (CoMFA) was done on a series of 45 flavonoids against human aromatase. A significant cross-validated correlation coefficient (q2) of 0.827 was obtained. The best predictive CoMFA model explaining the biological activity of the training and test sets with correlation coefficient values (r2) of 0.916 and 0.710, respectively, when used for virtual screening of a flavanoids database following molecular docking revealed a flavanone namely, 7-hydroxyflavanone beta-D-glucopyranoside showing highest predicted activity of 1.09?μM. In comparison to a well-established inhibitor of aromatase, namely 7-hydroxyflavanone (IC50: 3.8?μM), the derivative identified in the present study, namely 7-hydroxyflavanone beta-D-glucopyranoside exhibited about 3.5 folds higher inhibitory activity against aromatase. The result of virtual screening was further validated using molecular dynamics (MD) simulation analysis. Thus, a 25 ns MD simulation analysis revealed high stability and effective binding of 7-hydroxyflavanone beta-D-glucopyranoside within the active site of aromatase. To the best of our knowledge, this is the first report of CoMFA-based QSAR model for virtual screening of flavonoids as inhibitors of aromatase.  相似文献   

8.
Abstract

Histone deacetylases (HDACs), a critical family of epigenetic enzymes, has emerged as a promising target for antitumor drugs. Here, we describe our protocol of virtual screening in identification of novel potential HDAC inhibitors through pharmacophore modeling, 3D-QSAR, molecular docking and molecular dynamics (MD) simulation. Considering the limitation of current virtual screening works, drug repurposing strategy was applied to discover druggable HDAC inhibitor. The ligand-based pharmacophore and 3D-QSAR models were established, and their reliability was validated by different methods. Then, the DrugBank database was screened, followed by molecular docking. MD simulation (100?ns) was performed to further study the stability of ligand binding modes. Finally, results indicated the hit DB03889 with high in silico inhibitory potency was suitable for further experimental analysis.

Communicated by Ramaswamy H. Sarma  相似文献   

9.
We have applied computer simulation technique to study interaction of two anti-inflammatory drugs (NSAIDs) indoprofen and NS398 with cyclooxygenase (COX-1 and COX-2) enzymes. We have also investigated conformational flexibility of the two drugs by systematic search and simulated annealing molecular dynamics (SAMD) methods. Both the drugs were docked in the cyclooxygenase channel using in house docking program IMF1. The complexes were energy minimised by molecular mechanics (MM) method. These were heated for 30 picoseconds (ps), equilibrated for 110 ps at 300K and subjected to 'production simulation' for 110 ps by molecular dynamics (MD) method using Sanderís module of AMBER 5.0 package and united atom force field mostly from PARM96.DAT. Integration was carried out with time step of 0.001 ps, distance dependent di-electric constant with scaling factor 2.0 for 1-4 interaction and cut-off distance for non-bonded pair-list equal to 8A. The non-bonded pair-list was upgraded after every 20 cycles. The coordinate output from MD trajectories is analysed using analysis package of AMBER 5.0, MOLMOL, P-CURVES 3.0 and in house packages: ANALMD, ANALP1. We have observed perturbative changes in COX-1 and COX-2 structures due to indoprofen and NS398. In case of indoprofen specific changes between COX-1 and COX-2 were noted in helix D, H6, S6 and helix H8 in the cyclooxygenase cavity. In case of NS398 these were in helix B in membrane binding domain, helix H6, S8 and S10 in cyclooxygenase cavity and helices H14-H16 in small lobe close to haem binding region. Implications of these results in enzyme selectivity by NSAIDs is discussed here.  相似文献   

10.
An outbreak of Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has been recognized as a global health concern. Since, no specific antiviral drug is proven effective for treatment against COVID-19, identification of new therapeutics is an urgent need. In this study, flavonoid compounds were analyzed for its inhibitory potential against important protein targets of SARS-CoV-2 using computational approaches. Virtual docking was performed for screening of flavonoid compounds retrieved from PubChem against the main protease of SARS-CoV-2 using COVID-19 docking server. The cut off of dock score was set to >?9 kcal/mol and screened compounds were individually docked against main protease, RNA-dependent RNA polymerase, and spike proteins using AutoDock 4.1 software. Finally, lead flavonoid compounds were subjected to ADMET analysis. A total of 458 flavonoid compounds were virtually screened against main protease target and 36 compounds were selected based on the interaction energy value >?9 kcal/mol. Furthermore, these compounds were individually docked against protein targets and top 10 lead compounds were identified. Among the lead compounds, agathisflavone showed highest binding energy value of ?8.4 kcal/mol against main protease, Albireodelphin showed highest dock score of ?9.8 kcal/mol and ?11.2 kcal/mol against RdRp, and spike proteins, respectively. Based on the high dock score and ADMET properties, top 5 lead molecules such as Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate were identified as potent inhibitors against main protease, RdRp, and spike protein targets of SARS-CoV-2. These all compounds are having non-carcinogenic and non-mutagenic properties. This study finding suggests that the screened compounds include Albireodelphin, Apigenin 7-(6″-malonylglucoside), Cyanidin-3-(p-coumaroyl)-rutinoside-5-glucoside, Delphinidin 3-O-beta-D-glucoside 5-O-(6-coumaroyl-beta-D-glucoside) and (-)-Maackiain-3-O-glucosyl-6″-O-malonate could be the potent inhibitors of SARS-CoV-2 targets.  相似文献   

11.
Cytochrome P450 BM3 (CYP102A1) mutant M11 is able to metabolize a wide range of drugs and drug‐like compounds. Among these, M11 was recently found to be able to catalyze formation of human metabolites of mefenamic acid and other nonsteroidal anti‐inflammatory drugs (NSAIDs). Interestingly, single active‐site mutations such as V87I were reported to invert regioselectivity in NSAID hydroxylation. In this work, we combine crystallography and molecular simulation to study the effect of single mutations on binding and regioselective metabolism of mefenamic acid by M11 mutants. The heme domain of the protein mutant M11 was expressed, purified, and crystallized, and its X‐ray structure was used as template for modeling. A multistep approach was used that combines molecular docking, molecular dynamics (MD) simulation, and binding free‐energy calculations to address protein flexibility. In this way, preferred binding modes that are consistent with oxidation at the experimentally observed sites of metabolism (SOMs) were identified. Whereas docking could not be used to retrospectively predict experimental trends in regioselectivity, we were able to rank binding modes in line with the preferred SOMs of mefenamic acid by M11 and its mutants by including protein flexibility and dynamics in free‐energy computation. In addition, we could obtain structural insights into the change in regioselectivity of mefenamic acid hydroxylation due to single active‐site mutations. Our findings confirm that use of MD and binding free‐energy calculation is useful for studying biocatalysis in those cases in which enzyme binding is a critical event in determining the selective metabolism of a substrate. Proteins 2016; 84:383–396. © 2016 Wiley Periodicals, Inc.  相似文献   

12.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

13.
Hiasa H 《Biochemistry》2002,41(39):11779-11785
DNA gyrase and topoisomerase IV (Topo IV) are cellular targets of quinolone antibacterial drugs. The Ser-80 and the Glu-84 of the ParC subunit have been identified as mutational hotspots for quinolone resistance. Mutant Topo IV proteins containing a quinolone resistance-conferring mutation have been constructed, and the effects of these mutations on Topo IV are assessed. Both S80L and E84K mutations abolish the ability of quinolones to trap covalent Topo IV-DNA complexes, demonstrating that both the Ser-80 and the Glu-84 of ParC are essential for Topo IV-quinolone interaction. In addition, the E84K mutation greatly reduces the catalytic activity of Topo IV. Covalent Topo IV-DNA complexes formed with Topo IV containing the E84K mutation are more stable than those formed with the wild-type protein. Interestingly, the E84P mutation confers quinolone resistance to Topo IV without affecting its catalytic activity. The E84P mutation inhibits the formation of covalent Topo IV-DNA complexes when Mg(2+), but not Ca(2+), is used as a cofactor. These results show that the Glu-84 plays an important role in Topo IV-DNA interaction. Thus, the Glu-84 of ParC is critical for the interactions of Topo IV with both the quinolone drug and the DNA in topoisomerase-quinolone-DNA ternary complexes.  相似文献   

14.
[目的]微生物β-葡萄糖苷酶法水解银杏黄酮苷具有重要意义,不过目前这方面的研究极少。因此,本文目的是筛选到水解银杏黄酮苷的酶活高的微生物β-葡萄糖苷酶,并分析其底物选择性机制。[方法]以银杏叶提取物作为唯一碳源富集培养,从贵州传统发酵豆豉中筛选产对银杏黄酮苷水解酶活高的β-葡萄糖苷酶的菌株,并对该菌株进行鉴定。然后比较此β-葡萄糖苷酶对不同底物的选择性,同时测定此酶水解银杏黄酮苷反应的米氏常数Km及最大反应速率Vmax。最后,对不同的底物进行分子对接,分析其底物特异性机制。[结果]结果表明,筛选到的菌株GUXN01所产β-葡萄糖苷酶水解银杏黄酮苷的酶活最高,被鉴定为枯草芽孢杆菌。此β-葡糖糖苷酶对β构型的糖类以及苷类等具有广泛的底物特异性和不同的选择性,尤其对银杏黄酮苷具有很好的亲和性。分子对接研究表明枯草芽孢杆菌β-葡萄糖苷酶对银杏黄酮苷和其他糖苷类具有不同亲和性和选择性的原因主要是酶结构和底物分子结构的相互作用力的差异导致的。[结论]这些发现为GUXN01所产的β-葡萄糖苷酶应用于水解银杏黄酮苷类生产相应苷元奠定了良好的基础。  相似文献   

15.
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors.  相似文献   

16.
Aspartate β-semialdehyde dehydrogenase (ASADH) is a key enzyme for the biosynthesis of essential amino acids and several important metabolites in microbes. Inhibition of ASADH enzyme is a promising drug target strategy against Mycobacterium tuberculosis (Mtb). In this work, in silico approach was used to identify potent inhibitors of Mtb-ASADH. Aspartyl β-difluorophosphonate (β-AFP), a known lead compound, was used to understand the molecular recognition interactions (using molecular docking and molecular dynamics analysis). This analysis helped in validating the computational protocol and established the participation of Arg99, Glu224, Cys130, Arg249, and His256 amino acids as the key amino acids in stabilizing ligand–enzyme interactions for effective binding, an essential feature is H-bonding interactions with the two arginyl residues at the two ends of the ligand. Best binding conformation of β-AFP was selected as a template for shape-based virtual screening (ZINC and NCI databases) to identify compounds that competitively inhibit the Mtb-ASADH. The top rank hits were further subjected to ADME and toxicity filters. Final filter was based on molecular docking analysis. Each screened molecule carries the characteristics of the highly electronegative groups on both sides separated by an average distance of 6?Å. Finally, the best predicted 20 compounds exhibited minimum three H-bonding interactions with Arg99 and Arg249. These identified hits can be further used for designing the more potent inhibitors against ASADH family. MD simulations were also performed on two selected compounds (NSC4862 and ZINC02534243) for further validation. During the MD simulations, both compounds showed same H-bonding interactions and remained bound to key active residues of Mtb-ASADH.  相似文献   

17.
Cyclophilins (CyPs) are enzymes involved in protein folding. In Trypanosoma cruzi (T. cruzi), the most abundantly expressed CyP is the isoform TcCyP19. It has been shown that TcCyP19 is inhibited by the immunosuppressive drug cyclosporin A (CsA) and analogs, which also proved to have potent trypanosomicidal activity in vitro. In this work, we continue and expand a previous study on the molecular interactions of CsA, and a set of analogs modeled in complexes with TcCyP19. The modeled complexes were used to evaluate binding free energies by molecular dynamics (MD), applying the Linear Interaction Energy (LIE) method. In addition, putative binding sites were identified by molecular docking. In our analysis, the binding free energy calculations did not correlate with experimental data. The heterogeneity of the non-bonded energies and the variation in the pattern of hydrogen bonds suggest that the systems may not be suitable for the application of the LIE method. Further, the docking calculations identified two other putative binding sites with comparable scoring energies to the active site, a fact that may also explain the lack of correlation found. Kinetic experiments are needed to confirm or reject the multiple binding sites hypothesis. In the meantime, MD simulations at the alternative sites, employing other methods to compute binding free energies, might be successful at finding good correlations with the experimental data.  相似文献   

18.
19.
Two different series of novel β‐ketoamide curcumin analogs enriched in biological activities have been synthesized. The synthesized compounds were screened for their in vitro anti‐diabetic and AGEs inhibitory activities and exhibited potent to good anti‐diabetic and AGEs inhibitory activities. The molecular docking study was also performed with the α‐amylase enzyme.  相似文献   

20.
Histone deacetylases (HDACs) have gained increased attention as targets for anticancer drug design and development. HDAC inhibitors have proven to be effective for reversing the malignant phenotype in HDAC-dependent cancer cases. However, lack of selectivity of the many HDAC inhibitors in clinical use and trials contributes to toxicities to healthy cells. It is believed that, the continued identification of isoform-selective inhibitors will eliminate these undesirable adverse effects – a task that remains a major challenge to HDAC inhibitor designs. Here, in an attempt to identify isoform-selective inhibitors, a large compound library containing 2,703,000 compounds retrieved from Otava database was screened against class I HDACs by exhaustive approach of structure-based virtual screening using rDOCK and Autodock Vina. A total of 41 compounds were found to show high-isoform selectivity and were further redocked into their respective targets using Autodock4. Thirty-six compounds showed remarkable isoform selectivity and passed drug-likeness and absorption, distribution, metabolism, elimination and toxicity prediction tests using ADMET Predictor? and admetSAR. Furthermore, to study the stability of ligand binding modes, 10 ns-molecular dynamics (MD) simulations of the free HDAC isoforms and their complexes with respective best-ranked ligands were performed using nanoscale MD software. The inhibitors remained bound to their respective targets over time of the simulation and the overall potential energy, root-mean-square deviation, root-mean-square fluctuation profiles suggested that the detected compounds may be potential isoform-selective HDAC inhibitors or serve as promising scaffolds for further optimization towards the design of selective inhibitors for cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号