首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regions of conserved disorder prediction (CDP) were found in protein domains from all available InterPro member databases, although with varying frequency. These CDP regions were found in proteins from all kingdoms of life, including viruses. However, eukaryotes had 1 order of magnitude more proteins containing long disordered regions than did archaea and bacteria. Sequence conservation in CDP regions varied, but was on average slightly lower than in regions of conserved order. In some cases, disordered regions evolve faster than ordered regions, in others they evolve slower, and in the rest they evolve at roughly the same rate. A variety of functions were found to be associated with domains containing conserved disorder. The most common were DNA/RNA binding, and protein binding. Many ribosomal proteins also were found to contain conserved disordered regions. Other functions identified included membrane translocation and amino acid storage for germination. Due to limitations of current knowledge as well as the methodology used for this work, it was not determined whether these functions were directly associated with the predicted disordered region. However, the functions associated with conserved disorder in this work are in agreement with the functions found in other studies to correlate to disordered regions. We have established that intrinsic disorder may be more common in bacterial and archaeal proteins than previously thought, but this disorder is likely to be used for different purposes than in eukaryotic proteins, as well as occurring in shorter stretches of protein. Regions of predicted disorder were found to be conserved within a large number of protein families and domains. Although many think of such conserved domains as being ordered, in fact a significant number of them contain regions of disorder that are likely to be crucial to their functions.  相似文献   

2.
Many protein regions have been shown to be intrinsically disordered, lacking unique structure under physiological conditions. These intrinsically disordered regions are not only very common in proteomes, but also crucial to the function of many proteins, especially those involved in signaling, recognition, and regulation. The goal of this work was to identify the prevalence, characteristics, and functions of conserved disordered regions within protein domains and families. A database was created to store the amino acid sequences of nearly one million proteins and their domain matches from the InterPro database, a resource integrating eight different protein family and domain databases. Disorder prediction was performed on these protein sequences. Regions of sequence corresponding to domains were aligned using a multiple sequence alignment tool. From this initial information, regions of conserved predicted disorder were found within the domains. The methodology for this search consisted of finding regions of consecutive positions in the multiple sequence alignments in which a 90% or more of the sequences were predicted to be disordered. This procedure was constrained to find such regions of conserved disorder prediction that were at least 20 amino acids in length. The results of this work included 3,653 regions of conserved disorder prediction, found within 2,898 distinct InterPro entries. Most regions of conserved predicted disorder detected were short, with less than 10% of those found exceeding 30 residues in length.  相似文献   

3.
Proteins of the p53 family are expressed in vertebrates and in some invertebrate species. The main function of these proteins is to control and regulate cell cycle in response to various cellular signals, and therefore to control the organism's development. The regulatory functions of the p53 family members originate mostly from their highly-conserved and well-structured DNA-binding domains. Many human diseases (including various types of cancer) are related to the missense mutations within this domain. The ordered DNA-binding domains of the p53 family members are surrounded by functionally important intrinsically disordered regions. In this study, substitution rates and propensities in different regions of p53 were analyzed. The analyses revealed that the ordered DNA-binding domain is conserved, whereas disordered regions are characterized by high sequence diversity. This diversity was reflected both in the number of substitutions and in the types of substitutions to which each amino acid was prone. These results support the existence of a positive correlation between protein intrinsic disorder and sequence divergence during the evolutionary process. This higher sequence divergence provides strong support for the existence of disordered regions in p53 in vivo for if they were structured, they would evolve at similar rates as the rest of the protein.  相似文献   

4.
Traditionally, protein-protein interactions were thought to be mediated by large, structured domains. However, it has become clear that the interactome comprises a wide range of binding interfaces with varying degrees of flexibility, ranging from rigid globular domains to disordered regions that natively lack structure. Enrichment for disorder in highly connected hub proteins and its correlation with organism complexity hint at the functional importance of disordered regions. Nevertheless, they have not yet been extensively characterised. Shifting the attention from globular domains to disordered regions of the proteome might bring us closer to elucidating the dense and complex connectivity of the interactome. An important class of disordered interfaces are the compact mono-partite, short linear motifs (SLiMs, or eukaryotic linear motifs (ELMs)). They are evolutionarily plastic and interact with relatively low affinity due to the limited number of residues that make direct contact with the binding partner. These features confer to SLiMs the ability to evolve convergently and mediate transient interactions, which is imperative to network evolution and to maintain robust cell signalling, respectively. The ability to discriminate biologically relevant SLiMs by means of different attributes will improve our understanding of the complexity of the interactome and aid development of bioinformatics tools for motif discovery. In this paper, the curated instances currently available in the Eukaryotic Linear Motif (ELM) database are analysed to provide a clear overview of the defining attributes of SLiMs. These analyses suggest that functional SLiMs have higher levels of conservation than their surrounding residues, frequently evolve convergently, preferentially occur in disordered regions and often form a secondary structure when bound to their interaction partner. These results advocate searching for small groupings of residues in disordered regions with higher relative conservation and a propensity to form the secondary structure. Finally, the most interesting conclusions are examined in regard to their functional consequences.  相似文献   

5.
Nucleoporins with phenylalanine-glycine repeats (FG Nups) function at the nuclear pore complex (NPC) to facilitate nucleocytoplasmic transport. In Saccharomyces cerevisiae, each FG Nup contains a large natively unfolded domain that is punctuated by FG repeats. These FG repeats are surrounded by hydrophilic amino acids (AAs) common to disordered protein domains. Here we show that the FG domain of Nups from human, fly, worm, and other yeast species is also enriched in these disorder-associated AAs, indicating that structural disorder is a conserved feature of FG Nups and likely serves an important role in NPC function. Despite the conservation of AA composition, FG Nup sequences from different species show extensive divergence. A comparison of the AA substitution rates of proteins with syntenic orthologs in four Saccharomyces species revealed that FG Nups have evolved at twice the rate of average yeast proteins with most substitutions occurring in sequences between FG repeats. The rapid evolution of FG Nups is poorly explained by parameters known to influence AA substitution rate, such as protein expression level, interactivity, and essentiality; instead their rapid evolution may reflect an intrinsic permissiveness of natively unfolded structures to AA substitutions. The overall lack of AA sequence conservation in FG Nups is sharply contrasted by discrete stretches of conserved sequences. These conserved sequences highlight known karyopherin and nucleoporin binding sites as well as other uncharacterized sites that may have important structural and functional properties.  相似文献   

6.
Disordered domains are long regions of intrinsic disorder that ideally have conserved sequences, conserved disorder, and conserved functions. These domains were first noticed in protein–protein interactions that are distinct from the interactions between two structured domains and the interactions between structured domains and linear motifs or molecular recognition features (MoRFs). So far, disordered domains have not been systematically characterized. Here, we present a bioinformatics investigation of the sequence–disorder–function relationships for a set of probable disordered domains (PDDs) identified from the Pfam database. All the Pfam seed proteins from those domains with at least one PDD sequence were collected. Most often, if a set contains one PDD sequence, then all members of the set are PDDs or nearly so. However, many seed sets have sequence collections that exhibit diverse proportions of predicted disorder and structure, thus giving the completely unexpected result that conserved sequences can vary substantially in predicted disorder and structure. In addition to the induction of structure by binding to protein partners, disordered domains are also induced to form structure by disulfide bond formation, by ion binding, and by complex formation with RNA or DNA. The two new findings, (a) that conserved sequences can vary substantially in their predicted disorder content and (b) that homologues from a single domain can evolve from structure to disorder (or vice versa), enrich our understanding of the sequence ? disorder ensemble ? function paradigm.  相似文献   

7.
In this study, we describe the identification of nine novel genes isolated from a unique human first-trimester cDNA library generated from the placental bed. One of these clones, called C2360 and located on chromosome 10q22, was selected as it showed restricted expression in placental bed tissue as well as in JEG3 choriocarcinoma cells with absent expression in adult tissues. We show that the expression is restricted to first-trimester proliferative trophoblasts of the proximal column and show that C2360 is a nuclear protein. No detectable transactivation potential was observed for different domains of the protein. Secondary structure prediction showed that C2360 is a representative member of a eukaryotic family of proteins with a low conservation at the amino acid level, but with strong conservation at the structural level, sharing the general domain (coiled coil 1)-(helix 1)-(coiled coil 2)-(helix 2), or CHCH domain. Each alpha-helix within this domain contains two cysteine amino acids, and these intrahelical cysteines are separated by nine amino acids (C-X(9)-C motif). The fixed position within each helix indicated that both helices could form a hairpin structure stabilized by two interhelical disulfide bonds. Other proteins belonging to the family include estrogen-induced gene 2 and the ethanol-induced 6 protein. The conserved motif was found in yeast, plant, Drosophila, Caenorhabditis elegans, mouse, and human proteins, indicating that the ancestor of this protein family is of eukaryotic origin. These results indicate that C2360 is a representative member of a multifamily of proteins, sharing a protein domain that is conserved in eukaryotes.  相似文献   

8.
Comparative studies of the proteomes from different organisms have provided valuable information about protein domain distribution in the kingdoms of life. Earlier studies have been limited by the fact that only about 50% of the proteomes could be matched to a domain. Here, we have extended these studies by including less well-defined domain definitions, Pfam-B and clustered domains, MAS, in addition to Pfam-A and SCOP domains. It was found that a significant fraction of these domain families are homologous to Pfam-A or SCOP domains. Further, we show that all regions that do not match a Pfam-A or SCOP domain contain a significantly higher fraction of disordered structure. These unstructured regions may be contained within orphan domains or function as linkers between structured domains. Using several different definitions we have re-estimated the number of multi-domain proteins in different organisms and found that several methods all predict that eukaryotes have approximately 65% multi-domain proteins, while the prokaryotes consist of approximately 40% multi-domain proteins. However, these numbers are strongly dependent on the exact choice of cut-off for domains in unassigned regions. In conclusion, all eukaryotes have similar fractions of multi-domain proteins and disorder, whereas a high fraction of repeating domain is distinguished only in multicellular eukaryotes. This implies a role for repeats in cell-cell contacts while the other two features are important for intracellular functions.  相似文献   

9.
10.
Defining the role of intrinsic disorder in proteins in the myriad of biological processes with which it is involved represents a significant goal in modern biophysics. Toward this end, NMR is uniquely suited for molecular studies of dynamic and disordered regions, but studying these regions in concert with their more structured domains and binding partners presents spectroscopic challenges. Here, we investigate the interactions between the structured and disordered regions of the human glucocorticoid receptor (GR). To do this, we developed an NMR strategy that relies on a novel relaxation filter for the simultaneous study of structured and unstructured regions. Using this approach, we conducted a comparative analysis of three translational isoforms of GR containing a folded DNA-binding domain (DBD) and two disordered regions that flank the DBD, one of which varies in size in the different isoforms. Notably, we were able to assign resonances that had previously been inaccessible because of the spectral complexity of the translational isoforms, which in turn allowed us to 1) identify a region of the structured DBD that undergoes significant changes in the local chemical environment in the presence of the disordered region and 2) determine differences in the conformational ensembles of the disordered regions of the translational isoforms. Furthermore, an ensemble-based thermodynamic analysis of the isoforms reveals conserved patterns of stability within the N-terminal domain of GR that persist despite low sequence conservation. These studies provide an avenue for further investigations of the mechanistic underpinnings of the functional relevance of the translational isoforms of GR while also providing a general NMR strategy for studying systems containing both structured and disordered regions.  相似文献   

11.
Viruses have compact genomes that encode limited number of proteins in comparison to other biological entities. Interestingly, viral proteins have shown natural abundance of either completely disordered proteins that are recognized as intrinsically disorder proteins (IDPs) or partially disordered segments known as intrinsically disordered protein regions (IDPRs). IDPRs are involved in interactions with multiple binding partners to accomplish signaling, regulation, and control functions in cells. Tuning of IDPs and IDPRs are mediated through post-translational modification and alternative splicing. Often, the interactions of IDPRs with their binding protein partner(s) lead to transition from the state of disorder to ordered form. Such interaction-prone protein IDPRs are identified as molecular recognition features (MoRFs). Molecular recognition is an important initial step for the biomolecular interactions and their functional proceedings. Although previous studies have established occurrence of the IDPRs in Zika virus proteome, which provide the functional diversity and structural plasticity to viral proteins, the MoRF analysis has not been performed as of yet. Many computational methods have been developed for the identification of the MoRFs in protein sequences including ANCHOR, MoRFpred, DISOPRED3, and MoRFchibi_web server. In the current study, we have investigated the presence of MoRF regions in structural and non-structural proteins of Zika virus using an aforementioned set of computational techniques. Furthermore, we have experimentally validated the intrinsic disorderness of NS2B cofactor region of NS2B–NS3 protease. NS2B has one of the longest MoRF regions in Zika virus proteome. In future, this study may provide valuable information while investigating the virus host protein interaction networks.  相似文献   

12.
Knr4/Smi1 proteins are specific to the fungal kingdom and their deletion in the model yeast Saccharomyces cerevisiae and the human pathogen Candida albicans results in hypersensitivity to specific antifungal agents and a wide range of parietal stresses. In S. cerevisiae, Knr4 is located at the crossroads of several signalling pathways, including the conserved cell wall integrity and calcineurin pathways. Knr4 interacts genetically and physically with several protein members of those pathways. Its sequence suggests that it contains large intrinsically disordered regions. Here, a combination of small-angle X-ray scattering (SAXS) and crystallographic analysis led to a comprehensive structural view of Knr4. This experimental work unambiguously showed that Knr4 comprises two large intrinsically disordered regions flanking a central globular domain whose structure has been established. The structured domain is itself interrupted by a disordered loop. Using the CRISPR/Cas9 genome editing technique, strains expressing KNR4 genes deleted from different domains were constructed. The N-terminal domain and the loop are essential for optimal resistance to cell wall-binding stressors. The C-terminal disordered domain, on the other hand, acts as a negative regulator of this function of Knr4. The identification of molecular recognition features, the possible presence of secondary structure in these disordered domains and the functional importance of the disordered domains revealed here designate these domains as putative interacting spots with partners in either pathway. Targeting these interacting regions is a promising route to the discovery of inhibitory molecules that could increase the susceptibility of pathogens to the antifungals currently in clinical use.  相似文献   

13.
Despite the significant efforts devoted to decipher the particular protein features that encode for a prion or prion-like behavior, they are still poorly understood. The well-characterized yeast prions constitute an ideal model system to address this question, because, in these proteins, the prion activity can be univocally assigned to a specific region of their sequence, known as the prion forming domain (PFD). These PFDs are intrinsically disordered, relatively long and, in many cases, of low complexity, being enriched in glutamine/asparagine residues. Computational analyses have identified a significant number of proteins having similar domains in the human proteome. The compositional bias of these regions plays an important role in the transition of the prions to the amyloid state. However, it is difficult to explain how composition alone can account for the formation of specific contacts that position correctly PFDs and provide the enthalpic force to compensate for the large entropic cost of immobilizing these domains in the initial assemblies. We have hypothesized that short, sequence-specific, amyloid cores embedded in PFDs can perform these functions and, accordingly, act as preferential nucleation centers in both spontaneous and seeded aggregation. We have shown that the implementation of this concept in a prediction algorithm allows to score the prion propensities of putative PFDs with high accuracy. Recently, we have provided experimental evidence for the existence of such amyloid cores in the PFDs of Sup35, Ure2, Swi1, and Mot3 yeast prions. The fibrils formed by these short stretches may recognize and promote the aggregation of the complete proteins inside cells, being thus a promising tool for targeted protein inactivation.  相似文献   

14.
15.
Hairless is a member of the Notch signalling pathway, where it acts as antagonist by binding to Suppressor of Hairless [Su(H)], thereby inhibiting Notch target gene activation. The pathway and its members are highly conserved in metazoans from worms to humans. However, a Hairless orthologue from another species has not yet been identified. The identification of Hairless in largely diverged species by cross-hybridization has failed so far probably due to a low degree of conservation. Therefore, we turned to D. hydei where a Hairless mutation has been described before. The D. hydei Hairless orthologue is reasonably well conserved with regard to gene structure and expression. The prospective Hairless protein orthologues share several highly conserved regions which are separated by quite diverged stretches. As to be expected, the largest region of high conservation corresponds to the Su(H) binding domain. This region is also functionally conserved, since this D. hydei protein domain binds very strongly to the D. melanogaster Su(H) protein. The other conserved regions support our earlier structure-function analysis since they nicely correspond to previously defined, functionally important protein domains. Most notably, the very C-terminal domain which is very sensitive to structural alterations, is nearly identical between the two species. In summary, this evolutionary study improves the knowledge on functionally significant domains of the Hairless protein, and may be helpful for the future identification of homologues in other animals, especially in vertebrates. Received: 26 August 1998 / Accepted: 9 November 1998  相似文献   

16.
Abstract: Proteins are often classified in a binary fashion as either structured or disordered. However this approach has several deficits. Firstly, protein folding is always conditional on the physiochemical environment. A protein which is structured in some circumstances will be disordered in others. Secondly, it hides a fundamental asymmetry in behavior. While all structured proteins can be unfolded through a change in environment, not all disordered proteins have the capacity for folding. Failure to accommodate these complexities confuses the definition of both protein structural domains and intrinsically disordered regions. We illustrate these points with an experimental study of a family of small binding domains, drawn from the RNA polymerase of mumps virus and its closest relatives. Assessed at face value the domains fall on a structural continuum, with folded, partially folded, and near unstructured members. Yet the disorder present in the family is conditional, and these closely related polypeptides can access the same folded state under appropriate conditions. Any heuristic definition of the protein domain emphasizing conformational stability divides this domain family in two, in a way that makes no biological sense. Structural domains would be better defined by their ability to adopt a specific tertiary structure: a structure that may or may not be realized, dependent on the circumstances. This explicitly allows for the conditional nature of protein folding, and more clearly demarcates structural domains from intrinsically disordered regions that may function without folding.  相似文献   

17.
A phosphoprotein (P) is found in all viruses of the Mononegavirales order. These proteins form homo-oligomers, fulfil similar roles in the replication cycles of the various viruses, but differ in their length and oligomerization state. Sequence alignments reveal no sequence similarity among proteins from viruses belonging to the same family. Sequence analysis and experimental data show that phosphoproteins from viruses of the Paramyxoviridae contain structured domains alternating with intrinsically disordered regions. Here, we used predictions of disorder of secondary structure, and an analysis of sequence conservation to predict the domain organization of the phosphoprotein from Sendai virus, vesicular stomatitis virus (VSV) and rabies virus (RV P). We devised a new procedure for combining the results from multiple prediction methods and locating the boundaries between disordered regions and structured domains. To validate the proposed modular organization predicted for RV P and to confirm that the putative structured domains correspond to autonomous folding units, we used two-hybrid and biochemical approaches to characterize the properties of several fragments of RV P. We found that both central and C-terminal domains can fold in isolation, that the central domain is the oligomerization domain, and that the C-terminal domain binds to nucleocapsids. Our results suggest a conserved organization of P proteins in the Rhabdoviridae family in concatenated functional domains resembling that of the P proteins in the Paramyxoviridae family.  相似文献   

18.
19.
An interaction between a pair of proteins unique for a particular tissue is denoted as a tissue-specific interaction (TSI). Tissue-specific (TS) proteins always perform TSIs with a limited number of interacting partners. However, it has been claimed that housekeeping (HK) proteins frequently take part in TSIs. This is actually an unusual phenomenon. How a single HK protein mediates TSIs – remains an interesting yet an unsolved question. We have hypothesized that HK proteins have attained a high degree of structural flexibility to modulate TSIs efficiently. We have observed that HK proteins are selected to be intrinsically disordered compared to TS proteins. Therefore, the purposeful adaptation of structural disorder brings out special advantages for HK proteins compared to TS proteins. We have demonstrated that TSIs may play vital roles in shaping the molecular adaptation of disordered regions within HK proteins. We also have noticed that HK proteins, mediating a huge number of TSIs, have a greater portion of their interacting interfaces overlapped with the adjacent disordered segment. Moreover, these HK proteins, mediating TSIs, preferably adapt single domain (SD). We have concluded that HK proteins adapt a high degree of structural flexibility to mediate TSIs. Besides, having a SD along with structural flexibility is more economic than maintaining multiple domains with a rigid structure. This assists them in attaining various structural conformations upon binding to their partners, thereby designing an economically optimum molecular system.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号