首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, food, cosmetic, environmental and pharmaceutical fields are searching for alternative processes to obtain their major products in a more sustainable way. This fact is related to the increasing demand from the consumer market for natural products to substitute synthetic additives. Industrial biotechnology appears as a promising area for this purpose; however, the success of its application is highly dependent of the availability of a suitable microorganism. To overcome this drawback, the isolation of microorganisms from diverse sources, including fermented food, adverse environments, contaminated samples or agro-industrial wastes is an important approach that can provide a more adaptable strain able to be used as biocatalyst and that exhibit resistance to industrial conditions and high yields/productivities in biotechnological production of natural compounds. The aim of this review is to provide a solid set of information on the state of the art of isolation and screening studies for obtaining novel biocatalysts able to produce natural compounds, focusing in aromas, biosurfactants, polysaccharides and microbial oils.  相似文献   

2.
Synthetic surfactants are becoming increasingly unpopular in many applications due to previously disregarded effects on biological systems and this has led to a new focus on replacing such products with biosurfactants that are biodegradable and produced from renewal resources. Microbially derived biosurfactants have been investigated in numerous studies in areas including: increasing feed digestibility in an agricultural context, improving seed protection and fertility, plant pathogen control, antimicrobial activity, antibiofilm activity, wound healing and dermatological care, improved oral cavity care, drug delivery systems and anticancer treatments. The development of the potential of biosurfactants has been hindered somewhat by the myriad of approaches taken in their investigations, the focus on pathogens as source species and the costs associated with large-scale production. Here, we focus on various microbial sources of biosurfactants and the current trends in terms of agricultural and biomedical applications.  相似文献   

3.
Mulberry is a fast growing deciduous plant found in wide variety of climatic, topographical and soil conditions, and is widely distributed from temperate to subtropical regions. Due to presence of valuable phytochemical constituents, mulberry as a whole plant has been utilized as a functional food since long time. Mulberry fruits are difficult to preserve as they have relatively high water content. Therefore for proper utilization, different value-added products like syrups, squashes, teas, pestil sand köme, pekmez (turkuish by-products), yogurts, jams, jellies, wines, vinegar, breads, biscuits, parathas, and many more are made. In overseas, these value-added products are commercially sold and easily available, though in India, this versatile medicinal plant is still missing its identity at commercial and industrial scale. Leaves of mulberry are economically viable due to their important role in the sericulture industry since ancient times. Mulberries or its extracts exhibit excellent anti-microbial, anti-hyperglycaemic, anti-hyperlipidemic, anti-inflammatory, anti-cancer effects and is used to combat different acute and chronic diseases. Different parts of Morus species like fruits, leaves, twigs, and bark exhibit strong anti-tyrosinase inhibition activity that makes it a suitable candidate in cosmetic industries as a whitening agent. The current review provides a comprehensive discussion concerning the phytochemical constituents, functionality and nutraceutical potential of mulberry and as a common ingredient in various cosmetic products.  相似文献   

4.
Microbial production of surfactants and their commercial potential.   总被引:39,自引:0,他引:39       下载免费PDF全文
Many microorganisms, especially bacteria, produce biosurfactants when grown on water-immiscible substrates. Biosurfactants are more effective, selective, environmentally friendly, and stable than many synthetic surfactants. Most common biosurfactants are glycolipids in which carbohydrates are attached to a long-chain aliphatic acid, while others, like lipopeptides, lipoproteins, and heteropolysaccharides, are more complex. Rapid and reliable methods for screening and selection of biosurfactant-producing microorganisms and evaluation of their activity have been developed. Genes involved in rhamnolipid synthesis (rhlAB) and regulation (rhlI and rhlR) in Pseudomonas aeruginosa are characterized, and expression of rhlAB in heterologous hosts is discussed. Genes for surfactin production (sfp, srfA, and comA) in Bacillus spp. are also characterized. Fermentative production of biosurfactants depends primarily on the microbial strain, source of carbon and nitrogen, pH, temperature, and concentration of oxygen and metal ions. Addition of water-immiscible substrates to media and nitrogen and iron limitations in the media result in an overproduction of some biosurfactants. Other important advances are the use of water-soluble substrates and agroindustrial wastes for production, development of continuous recovery processes, and production through biotransformation. Commercialization of biosurfactants in the cosmetic, food, health care, pulp- and paper-processing, coal, ceramic, and metal industries has been proposed. However, the most promising applications are cleaning of oil-contaminated tankers, oil spill management, transportation of heavy crude oil, enhanced oil recovery, recovery of crude oil from sludge, and bioremediation of sites contaminated with hydrocarbons, heavy metals, and other pollutants. Perspectives for future research and applications are also discussed.  相似文献   

5.
There has been considerable interest in the use of biosurfactants due to the diversity of structures and the possibility of production from a variety of substrates. The potential for industrial applications has been growing, as these natural compounds are tolerant to common processing methods and can compete with synthetic surfactants with regards to the capacity to reduce surface and interfacial tensions as well as stabilise emulsions while offering the advantages of biodegradability and low toxicity. Among biosurfactant-producing microorganisms, some yeasts present no risks of toxicity or pathogenicity, making them ideal for use in food formulations. Indeed, the use of these biomolecules in foods has attracted industrial interest due to their properties as emulsifiers and stabilizers of emulsions. Studies have also demonstrated other valuable properties, such as antioxidant and antimicrobial activity, enabling the aggregation of greater value to products and the avoidance of contamination both during and after processing. All these characteristics allow biosurfactants to be used as additives and versatile ingredients for the processing of foods. The present review discusses the potential application of biosurfactants as emulsifying agents in food formulations, such as salad dressing, bread, cakes, cookies, and ice cream. The antioxidant, antimicrobial and anti-adhesive properties of these biomolecules are also discussed, demonstrating the need for further studies to make the use of the natural compounds viable in this expanding sector.  相似文献   

6.
脂肽类生物表面活性剂的研究进展   总被引:12,自引:2,他引:12  
脂肽是由微生物代谢产生的一类具有很强表面活性的生物表面活性剂 ,在医药、食品、化妆品和微生物采油等方面有良好的应用潜力。本文对脂肽的生产、分离、鉴定及应用方面进行了综述  相似文献   

7.
Studies on RNA targeting by small molecules to specifically control certain cellular functions is an area of remarkable current interest. For this purpose, a basic understanding of the molecular aspects of the interaction of small molecules with various RNA structures is essential. Alkaloids are a group of natural products with potential therapeutic utility, and very recently, their interaction with many RNA structures have been reported. Especially noteworthy are the protoberberines and aristolochia alkaloids distributed widely in many botanical families. Many of the alkaloids of these group exhibit excellent binding affinity to many RNA structures that may be exploited to develop RNA targeted therapeutics. This review attempts to present the current status on the understanding of the interaction of these alkaloids with various RNA structures, mainly highlighting the biophysical aspects.  相似文献   

8.
Microbial biosurfactants with high ability to reduce surface and interfacial surface tension and conferring important properties such as emulsification, detergency, solubilization, lubrication and phase dispersion have a wide range of potential applications in many industries. Significant interest in these compounds has been demonstrated by environmental, bioremediation, oil, petroleum, food, beverage, cosmetic and pharmaceutical industries attracted by their low toxicity, biodegradability and sustainable production technologies. Despite having significant potentials associated with emulsion formation, stabilization, antiadhesive and antimicrobial activities, significantly less output and applications have been reported in food industry. This has been exacerbated by uneconomical or uncompetitive costing issues for their production when compared to plant or chemical counterparts. In this review, biosurfactants properties, present uses and potential future applications as food additives acting as thickening, emulsifying, dispersing or stabilising agents in addition to the use of sustainable economic processes utilising agro‐industrial wastes as alternative substrates for their production are discussed. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1097–1108, 2013  相似文献   

9.
Chemical defenses: from compounds to communities   总被引:2,自引:0,他引:2  
Marine natural products play critical roles in the chemical defense of many marine organisms and in some cases can influence the community structure of entire ecosystems. Although many marine natural products have been studied for biomedical activity, yielding important information about their biochemical effects and mechanisms of action, much less is known about ecological functions. The way in which marine consumers perceive chemical defenses can influence their health and survival and determine whether some natural products persist through a food chain. This article focuses on selected marine natural products, including okadaic acid, brevetoxins, lyngbyatoxin A, caulerpenyne, bryostatins, and isocyano terpenes, and examines their biosynthesis (sometimes by symbiotic microorganisms), mechanisms of action, and biological and ecological activity. We selected these compounds because their impacts on marine organisms and communities are some of the best-studied among marine natural products. We discuss the effects of these compounds on consumer behavior and physiology, with an emphasis on neuroecology. In addition to mediating a variety of trophic interactions, these compounds may be responsible for community-scale ecological impacts of chemically defended organisms, such as shifts in benthic and pelagic community composition. Our examples include harmful algal blooms; the invasion of the Mediterranean by Caulerpa taxifolia; overgrowth of coral reefs by chemically rich macroalgae and cyanobacteria; and invertebrate chemical defenses, including the role of microbial symbionts in compound production.  相似文献   

10.
Biosurfactants: moving towards industrial application.   总被引:2,自引:0,他引:2  
Chemically synthesized surface-active compounds are widely used in the pharmaceutical, cosmetic, petroleum and food industries. However, with the advantages of biodegradability, and production on renewable-resource substrates, biosurfactants may eventually replace their chemically synthesized counterparts. So far, the use of biosurfactants has been limited to a few specialized applications because biosurfactants have been economically uncompetitive. There is a need to gain a greater understanding of the physiology, genetics and biochemistry of biosurfactant-producing strains, and to improve process technology to reduce production costs.  相似文献   

11.
Lycopene is the pigment principally responsible for the characteristic deep-red color of ripe tomato fruits and tomato products. It has attracted attention due to its biological and physicochemical properties, especially related to its effects as a natural antioxidant. Although it has no provitamin A activity, lycopene does exhibit a physical quenching rate constant with singlet oxygen almost twice as high as that of beta-carotene. This makes its presence in the diet of considerable interest. Increasing clinical evidence supports the role of lycopene as a micronutrient with important health benefits, because it appears to provide protection against a broad range of epithelial cancers. Tomatoes and related tomato products are the major source of lycopene compounds, and are also considered an important source of carotenoids in the human diet. Undesirable degradation of lycopene not only affects the sensory quality of the final products, but also the health benefit of tomato-based foods for the human body. Lycopene in fresh tomato fruits occurs essentially in the all-trans configuration. The main causes of tomato lycopene degradation during processing are isomerization and oxidation. Isomerization converts all-trans isomers to cis-isomers due to additional energy input and results in an unstable, energy-rich station. Determination of the degree of lycopene isomerization during processing would provide a measure of the potential health benefits of tomato-based foods. Thermal processing (bleaching, retorting, and freezing processes) generally cause some loss of lycopene in tomato-based foods. Heat induces isomerization of the all-trans to cis forms. The cis-isomers increase with temperature and processing time. In general, dehydrated and powdered tomatoes have poor lycopene stability unless carefully processed and promptly placed in a hermetically sealed and inert atmosphere for storage. A significant increase in the cis-isomers with a simultaneous decrease in the all-trans isomers can be observed in the dehydrated tomato samples using the different dehydration methods. Frozen foods and heat-sterilized foods exhibit excellent lycopene stability throughout their normal temperature storage shelf life. Lycopene bioavailability (absorption) can be influenced by many factors. The bioavailability of cis-isomers in food is higher than that of all-trans isomers. Lycopene bioavailability in processed tomato products is higher than in unprocessed fresh tomatoes. The composition and structure of the food also have an impact on the bioavailability of lycopene and may affect the release of lycopene from the tomato tissue matrix. Food processing may improve lycopene bioavailability by breaking down cell walls, which weakens the bonding forces between lycopene and tissue matrix, thus making lycopene more accessible and enhancing the cis-isomerization. More information on lycopene bioavailability, however, is needed. The pharmacokinetic properties of lycopene remain particularly poorly understood. Further research on the bioavalability, pharmacology, biochemistry, and physiology must be done to reveal the mechanism of lycopene in human diet, and the in vivo metabolism of lycopene. Consumer demand for healthy food products provides an opportunity to develop lycopene-rich food as new functional foods, as well as food-grade and pharmaceutical-grade lycopene as new nutraceutical products. An industrial scale, environmentally friendly lycopene extraction and purification procedure with minimal loss of bioactivities is highly desirable for the foods, feed, cosmetic, and pharmaceutical industries. High-quality lycopene products that meet food safety regulations will offer potential benefits to the food industry.  相似文献   

12.
The discovery of novel natural products for drug development relies heavily upon a rich biodiversity, of which the marine environment is an obvious example. Marine natural product research has spawned several drugs and many other candidates, some of which are the focus of current clinical trials. The sponge megadiversity of Papua New Guinea is a rich but underexplored source of bioactive natural products. Here, we review some of the many natural products derived from PNG sponges with an emphasis on those with interesting biological activity and, therefore, drug potential. Many bioactive natural products discussed here appear to be derived from non‐ribosomal peptide and polyketide biosynthesis pathways, strongly suggesting a microbial origin of these compounds. With this in mind, we also explore the notion of sponge‐symbiont biosynthesis of these bioactive compounds and present examples to support the working hypothesis.  相似文献   

13.
Mucosal surfaces, such as the vaginal epithelium, are natural barriers to infection that are constantly exposed to bacteria and viruses, and are therefore potential sites of entry for numerous pathogens. The vaginal epithelium can be damaged mechanically, e.g. by the incorrect use of objects such as tampons, and by chemicals that are irritating or corrosive. Consequently, this can lead to an increase in susceptibility to further damage or infection. Pharmaceutical, cosmetic and personal care products that are specifically formulated for application onto human external mucosae can occasionally induce undesirable local or systemic side-effects. Therefore, the compatibility of applied materials with this mucosal surface represents a key issue to be addressed by manufacturers. The most frequently used method for assessing vaginal mucosal irritation is the in vivo rabbit vaginal irritation test. However, the current emphasis in the field of toxicology is to use alternative in vitro methods that reduce, refine, and replace the use of animals, and which model and predict human, not animal, responses. Such an approach is of particular interest to the personal care and cosmetic industries in their effort to comply with European legislative measures, such as the 7th Amendment to the EU Cosmetics Directive that does not permit the marketing of cosmetic products if they, or their ingredients, have been tested for irritation responses in animals. The focus of this review is to provide an overview of the alternative and in vitro tests that are currently available for vaginal mucosal irritation assessment, and which are already used, or may become useful, to establish the safety of newly-designed products for human use.  相似文献   

14.
Strategies for transgenic manipulation of monoterpene biosynthesis in plants   总被引:10,自引:0,他引:10  
Monoterpenes, the C(10) isoprenoids, are a large family of natural products that are best known as constituents of the essential oils and defensive oleoresins of aromatic plants. In addition to ecological roles in pollinator attraction, allelopathy and plant defense, monoterpenes are used extensively in the food, cosmetic and pharmaceutical industries. The importance of these plant products has prompted the definition of many monoterpene biosynthetic pathways, the cloning of the relevant genes and the development of genetic transformation techniques for agronomically significant monoterpene-producing plants. Metabolic engineering of monoterpene biosynthesis in the model plant peppermint has resulted in yield increase and compositional improvement of the essential oil, and also provided strategies for manipulating flavor and fragrance production, and plant defense.  相似文献   

15.
Surfactants, both chemical and biological, are amphiphilic compounds which can reduce surface and interfacial tensions by accumulating at the interface of immiscible fluids and increase the solubility, mobility, bioavailability and subsequent biodegradation of hydrophobic or insoluble organic compounds. Investigations on their impacts on microbial activity have generally been limited in scope to the most common and best characterized surfactants. Recently a number of new biosurfactants have been described and accelerated advances in molecular and cellular biology are expected to expand our insights into the diversity of structures and applications of biosurfactants. Biosurfactants play an essential natural role in the swarming motility of microorganisms and participate in cellular physiological processes of signaling and differentiation as well as in biofilm formation. Biosurfactants also exhibit natural physiological roles in increasing bioavailability of hydrophobic molecules and can complex with heavy metals, and some also possess antimicrobial activity. Chemical- and indeed bio-surfactants may also be added exogenously to microbial systems to influence behaviour and/or activity, mimicking the latter effects of biosurfactants. They have been exploited in this way, for example as antimicrobial agents in disease control and to improve degradation of chemical contaminants. Chemical surfactants can interact with microbial proteins and can be manipulated to modify enzyme conformation in a manner that alters enzyme activity, stability and/or specificity. Both chemical- and bio-surfactants are potentially toxic to specific microbes and may be exploited as antimicrobial agents against plant, animal and human microbial pathogens. Because of the widespread use of chemical surfactants, their potential impacts on microbial communities in the environment are receiving considerable attention.  相似文献   

16.
Usnic acid   总被引:10,自引:0,他引:10  
Since its first isolation in 1844, usnic acid [2,6-diacetyl-7,9-dihydroxy-8,9b-dimethyl-1,3(2H,9bH)-dibenzo-furandione] has become the most extensively studied lichen metabolite and one of the few that is commercially available. Usnic acid is uniquely found in lichens, and is especially abundant in genera such as Alectoria, Cladonia, Usnea, Lecanora, Ramalina and Evernia. Many lichens and extracts containing usnic acid have been utilized for medicinal, perfumery, cosmetic as well as ecological applications. Usnic acid as a pure substance has been formulated in creams, toothpaste, mouthwash, deodorants and sunscreen products, in some cases as an active principle, in others as a preservative. In addition to antimicrobial activity against human and plant pathogens, usnic acid has been shown to exhibit antiviral, antiprotozoal, antiproliferative, anti-inflammatory and analgesic activity. Ecological effects, such as antigrowth, antiherbivore and anti-insect properties, have also been demonstrated. A difference in biological activity has in some cases been observed between the two enantiomeric forms of usnic acid. Recently health food supplements containing usnic acid have been promoted for use in weight reduction, with little scientific support. The emphasis of the current review is on the chemistry and biological activity of usnic acid and its derivatives in addition to rational and ecologically acceptable methods for provision of this natural compound on a large scale.  相似文献   

17.
Mannosylerythritol lipids (MELs) are glycolipid biosurfactants abundantly produced by different basidiomycetous yeasts such as Pseudozyma, and show not only excellent interfacial properties but also versatile biochemical actions. These features of MELs make their application in new technology areas possible. Recently, the structural and functional variety of MELs was considerably expanded by advanced microbial screening methods. Different types of MELs bearing different hydrophilic and hydrophobic parts have been reported. The genes responsible for MEL biosynthesis were identified, and their genetic study is now in progress, aiming to control the chemical structure. The excellent properties leading to practical cosmetic ingredients, i.e., moisturization of dry skin, repair of damaged hair, activation of fibroblast and papilla cells and antioxidant and protective effects in skin cells, have been demonstrated on the yeast glycolipid biosurfactants. In this review, the current status of research and development on MELs, particularly the commercial application in cosmetics, is described.  相似文献   

18.
There has been significant recent interest in the commercial utilisation of algae based on their valuable chemical constituents many of which exhibit multiple bioactivities with applications in the food, cosmetic, agri- and horticultural sectors and in human health. Compounds of particular commercial interest include pigments, lipids and fatty acids, proteins, polysaccharides and phenolics which all display considerable diversity between and within taxa. The chemical composition of natural algal populations is further influenced by spatial and temporal changes in environmental parameters including light, temperature, nutrients and salinity, as well as biotic interactions. As reported bioactivities are closely linked to specific compounds it is important to understand, and be able to quantify, existing chemical diversity and variability. This review outlines the taxonomic, ecological and chemical diversity between, and within, different algal groups and the implications for commercial utilisation of algae from natural populations. The biochemical diversity and complexity of commercially important types of compounds and their environmental and developmental control are addressed. Such knowledge is likely to help achieve higher and more consistent levels of bioactivity in natural samples and may allow selective harvesting according to algal species and local environmental conditions for different groups of compounds.  相似文献   

19.
Plant natural products have been extensively exploited in food,medicine,flavor,cosmetic,renewable fuel,and other industrial sectors.Synthetic biology has recently emerged as a promising means for the cost-effective and sustainable production of natural products.Compared with engineering microbes for the production of plant natural products,the potential of plants as chassis for producing these compounds is underestimated,largely due to challenges encountered in engineering plants.Knowledge in pl...  相似文献   

20.
Historically, marine invertebrates have been a prolific source of unique natural products, with a diverse array of biological activities. Recent studies of invertebrate-associated microbial communities are revealing microorganisms as the true producers of many of these compounds. Inspired by the human microbiome project, which has highlighted the human intestine as a unique microenvironment in terms of microbial diversity, we elected to examine the bacterial communities of fish intestines (which we have termed the fish microbiome) as a new source of microbial and biosynthetic diversity for natural products discovery. To test the hypothesis that the fish microbiome contains microorganisms with unique capacity for biosynthesizing natural products, we examined six species of fish through a combination of dissection and culture-dependent evaluation of intestinal microbial communities. Using isolation media designed to enrich for marine Actinobacteria, we have found three main clades that show taxonomic divergence from known strains, several of which are previously uncultured. Extracts from these strains exhibit a wide range of activities against both gram-positive and gram-negative human pathogens, as well as several fish pathogens. Exploration of one of these extracts has identified the novel bioactive lipid sebastenoic acid as an anti-microbial agent, with activity against Staphylococcus aureus, Bacillus subtilis, Enterococcus faecium, and Vibrio mimicus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号