首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
B‐cell lymphoma (Bcl‐2) is commonly associated with the progression and preservation of cancer and certain lymphomas; therefore, it is considered as a biological target against cancer. Nevertheless, evidence of all its structural binding sites has been hidden because of the lack of a complete Bcl‐2 model, given the presence of a flexible loop domain (FLD), which is responsible for its complex behavior. FLD region has been implicated in phosphorylation, homotrimerization, and heterodimerization associated with Bcl‐2 antiapoptotic function. In this contribution, homology modeling, molecular dynamics (MD) simulations in the microsecond (µs) time‐scale and docking calculations were combined to explore the conformational complexity of unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 systems. Conformational ensembles generated through MD simulations allowed for identifying the most populated unphosphorylated/phosphorylated monomeric conformations, which were used as starting models to obtain trimeric complexes through protein–protein docking calculations, also submitted to µs MD simulations. Principal component analysis showed that FLD represents the main contributor to total Bcl‐2 mobility, and is affected by phosphorylation and oligomerization. Subsequently, based on the most representative unphosphorylated/phosphorylated monomeric and trimeric Bcl‐2 conformations, docking studies were initiated to identify the ligand binding site of several known Bcl‐2 inhibitors to explain their influence in homo‐complex formation and phosphorylation. Docking studies showed that the different conformational states experienced by FLD, such as phosphorylation and oligomerization, play an essential role in the ability to make homo and hetero‐complexes. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 393–413, 2016.  相似文献   

2.
Abstract

Phosphopantetheine adenylyltransferase (PPAT) has been recognized as a promising target to develop novel antimicrobial agents, which is a hexameric enzyme that catalyzes the penultimate step in coenzyme A biosynthesis. In this work, molecular modeling study was performed with a series of PPAT inhibitors using molecular docking, three-dimensional qualitative structure-activity relationship (3D-QSAR) and molecular dynamic (MD) simulations to reveal the structural determinants for their bioactivities. Molecular docking study was applied to understand the binding mode of PPAT with its inhibitors. Subsequently, 3D-QSAR model was constructed to find the features required for different substituents on the scaffolds. For the best comparative molecular field analysis (CoMFA) model, the Q2 and R2 values of which were calculated as 0.702 and 0.989, while they were calculated as 0.767 and 0.983 for the best comparative molecular similarity index analysis model. The statistical data verified the significance and accuracy of our 3D-QSAR models. Furthermore, MD simulations were carried out to evaluate the stability of the receptor–ligand contacts in physiological conditions, and the results were consistent with molecular docking studies and 3D-QSAR contour map analysis. Binding free energy was calculated with molecular mechanics generalized born surface area approach, the result of which coincided well with bioactivities and demonstrated that van der Waals accounted for the largest portion. Overall, our study provided a valuable insight for further research work on the recognition of potent PPAT inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

3.
Three series of novel urushiol derivatives were designed by introducing a hydroxamic acid moiety into the tail of an alkyl side chain and substituents with differing electronic properties or steric bulk onto the benzene ring and alkyl side chain. The compounds’ binding affinity toward HDAC8 was screened by Glide docking. The highest-scoring compounds were processed further with molecular docking, MD simulations, and binding free energy studies to analyze the binding modes and mechanisms. Ten compounds had Glide scores of ?8.2 to ?10.2, which revealed that introducing hydroxy, carbonyl, amino, or methyl ether groups into the alkyl side chain or addition of –F, –Cl, sulfonamide, benzamido, amino, or hydroxy substituents on the benzene ring could significantly increase binding affinity. Molecular docking studies revealed that zinc ion coordination, hydrogen bonding, and hydrophobic interactions contributed to the high calculated binding affinities of these compounds toward HDAC8. MD simulations and binding free energy studies showed that all complexes possessed good stability, as characterized by low RMSDs, low RMSFs of residues, moderate hydrogen bonding and zinc ion coordination and low values of binding free energies. Hie147, Tyr121, Phe175, Hip110, Phe119, Tyr273, Lys21, Gly118, Gln230, Leu122, Gly269, and Gly107 contributed favorably to the binding; and Van der Waals and electrostatic interactions provided major contributions to the stability of these complexes. These results show the potential of urushiol derivatives as HDAC8 binding lead compounds, which have great therapeutic potential in the treatment of various malignancies, neurological disorders, and human parasitic diseases.  相似文献   

4.
5.
Cartilage degradation in rheumatoid arthritis is mediated principally by the collagenases and gelatinases. Gelatinase B (also called matrix metalloproteinase 9 – MMP-9), is a valid target molecule which is known to participate in cartilage degradation as well as angiogenesis associated with the disease and inhibition of its activity shall prevent cartilage damage and angiogenesis. The focus of this study is to investigate the possibilities of MMP-9 inhibition by flavonol class of bioflavonoids by studying their crucial binding interactions at the active site of MMP 9 using molecular docking (Glide XP and QPLD) and further improvisation by post-docking MM-GBSA and molecular dynamic (MD) simulations. The results show that flavonols can convincingly bind to active site of MMP-9 as demonstrated by their stable interactions at the S1′ specificity pocket and favourable binding energies. Gossypin has emerged as a promising candidate with a docking score of ?14.618 kcal/mol, binding energy of ?79.97 kcal/mol and a stable MD pattern over 15 ns. In addition, interaction mechanisms with respect to catalytic site zinc are also discussed. Further, the drug-like characters of the ligands were also analysed using ADME analysis.  相似文献   

6.
7.
Singh N  Briggs JM 《Biopolymers》2008,89(12):1104-1113
Protein flexibility and conformational diversity is well known to be a key characteristic of the function of many proteins. Human blood coagulation proteins have multiple substrates, and various protein-protein interactions are required for the smooth functioning of the coagulation cascade to maintain blood hemostasis. To address how a protein may cope with multiple interactions with its structurally diverse substrates and the accompanied structural changes that may drive these changes, we studied human Factor X. We employed 20 ns of molecular dynamics (MD) and steered molecular dynamics (SMD) simulations on two different conformational forms of Factor X, open and closed, and observed an interchangeable conformational transition from one to another. This work also demonstrates the roles of various aromatic residues involved in aromatic-aromatic interactions, which make this dynamic transition possible.  相似文献   

8.
c-Jun-NH2 terminal kinases (JNKs) come under a class of serine/threonine protein kinases and are encoded by three genes, namely JNK1, JNK2 and JNK3. Human JNK1 is a cytosolic kinase belonging to mitogen-activated protein kinase (MAPK) family, which plays a major role in intracrinal signal transduction cascade mechanism. Overexpressed human JNK1, a key kinase interacts with other kinases involved in the etiology of many cancers, such as skin cancer, liver cancer, breast cancer, brain tumors, leukemia, multiple myeloma and lymphoma. Thus, to unveil a novel human JNK1 antagonist, receptor-based pharmacophore modeling was performed with the available eighteen cocrystal structures of JNK1 in the protein data bank. Eighteen e-pharmacophores were generated from the 18 cocrystal structures. Four common e-pharmacophores were developed from the 18 e-pharmacophores, which were used as three-dimensional (3D) query for shape-based similarity screening against more than one million small molecules to generate a JNK1 ligand library. Rigid receptor docking (RRD) performed using GLIDE v6.3 for the 1683 compounds from in-house library and 18 cocrystal ligands with human JNK1 from lower stringency to higher stringency revealed 17 leads. Further to derive the best leads, dock complexes obtained from RRD were studied further with quantum-polarized ligand docking (QPLD), induced fit docking (IFD) and molecular mechanics/generalized Born surface area (MM-GBSA). Four leads have showed lesser binding free energy and better binding affinity towards JNK1 compared to 18 cocrystal ligands. Additionally, JNK1–lead1 complex interaction stability was reasserted using 50?ns MD simulations run and also compared with the best resolute cocrystal structure using Desmond v3.8. Thus, the results obtained from RRD, QPLD, IFD and MD simulations indicated that lead1 might be used as a potent antagonist toward human JNK1 in cancer therapeutics.  相似文献   

9.
Some ingredients from herbal medicine can significantly affect the activity of CYP2D6, thus leading to serious interactions between herbs and drugs. Quercetin and hyperoside are active ingredients widely found in vegetables, fruits, and herbal medicines. Quercetin and hyperoside have many biological activities. In this work, the characteristic bindings of CYP2D6 with quercetin/hyperoside are revealed by multi-spectroscopy analysis, molecular docking, and molecular dynamics simulations. The fluorescence of CYP2D6 is statically quenched by quercetin and hyperoside. The binding constant (Ka) values of CYP2D6–quercetin/hyperoside range from 104 L mol−1, which indicates that these two flavonoids bind moderately to CYP2D6. Meanwhile, quercetin has a stronger quenching ability to CYP2D6 than that of hyperoside. The secondary structure of CYP2D6 is obviously changed by binding with quercetin/hyperoside. The docking results reveal that the quercetin/hyperoside enters the active site of CYP2D6 near heme and binds to CYP2D6 by hydrogen bonds and van der Waals forces. The molecular dynamics simulation results indicate that the binding of quercetin/hyperoside can stabilize the two complexes, enhance the flexibility of CYP2D6 backbone atoms, and make a more unfolded and looser structure of CYP2D6.  相似文献   

10.
Abstract

Plasmodium falciparum dihydrofolate reductase enzyme (PfDHFR) is counted as one of the attractive and validated antimalarial drug targets. However, the point mutations in the active site of wild-type PfDHFR have developed resistance against the well-known antifolates. Therefore, there is a dire need for the development of inhibitors that can inhibit both wild-type and mutant-type DHFR enzyme. In the present contribution, we have constructed the common feature pharmacophore models from the available PfDHFR. A representative hypothesis was prioritized and then employed for the screening of natural product library to search for the molecules with complementary features responsible for the inhibition. The screened candidates were processed via drug-likeness filters and molecular docking studies. The docking was carried out on the wild-type PfDHFR (3QGT); double-mutant PfDHFR (3UM5 and 1J3J) and quadruple-mutant PfDHFR (1J3K) enzymes. A total of eight common hits were obtained from the docking calculations that could be the potential inhibitors for both wild and mutant type DHFR enzymes. Eventually, the stability of these candidates with the selected proteins was evaluated via molecular dynamics simulations. Except for SPECS14, all the prioritized candidates were found to be stable throughout the simulation run. Overall, the strategy employed in the present work resulted in the retrieval of seven candidates that may show inhibitory activity against PfDHFR and could be further exploited as a scaffold to develop novel antimalarials.

Communicated by Ramaswamy H. Sarma  相似文献   

11.
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30’s molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π–π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.  相似文献   

12.
Acetyl-CoA carboxylase (ACC) enzyme plays an important role in the regulation of biosynthesis and oxidation of fatty acids. ACC is a recognized drug target for the treatment of obesity and diabetes. Combination of ligand and structure-based in silico methods along with activity and toxicity prediction provides best lead compounds in the drug discovery process. In this study, a data-set of 100 ACC inhibitors were used for the development of comparative molecular field analysis (CoMFA) and comparative molecular similarity index matrix analysis (CoMSIA) models. The generated contour maps were used for the design of novel ACC inhibitors. CoMFA and CoMSIA models were used for the predication of activity of designed compounds. In silico toxicity risk prediction study was carried out for the designed compounds. Molecular docking and dynamic simulations studies were performed to know the binding mode of designed compounds with the ACC enzyme. The designed compounds showed interactions with key amino acid residues important for catalysis, and good correlation was observed between binding free energy and inhibition of ACC.  相似文献   

13.
14.
Recently, Histone Lysine Specific Demethylase 1 (LSD1) was regarded as a promising anticancer target for the novel drug discovery. And several small molecules as LSD1 inhibitors in different structures have been reported. In this work, we carried out a molecular modeling study on the 6-aryl-5-cyano-pyrimidine fragment LSD1 inhibitors using three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used to generate 3D-QSAR models. The results show that the best CoMFA model has q2 = 0.802, r2ncv = 0.979, and the best CoMSIA model has q2 = 0.799, r2ncv = 0.982. The electrostatic, hydrophobic and H-bond donor fields play important roles in the models. Molecular docking studies predict the binding mode and the interactions between the ligand and the receptor protein. Molecular dynamics simulations results reveal that the complex of the ligand and the receptor protein are stable at 300 K. All the results can provide us more useful information for our further drug design.  相似文献   

15.
Heat shock protein 90(Hsp90), as a molecular chaperone, play a crucial role in folding and proper function of many proteins. Hsp90 inhibitors containing isoxazole scaffold are currently being used in the treatment of cancer as tumor suppressers. Here in the present studies, new compounds based on isoxazole scaffold were predicted using a combination of molecular modeling techniques including three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamic (MD) simulations. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were also done. The steric and electrostatic contour map of CoMFA and CoMSIA were created. Hydrophobic, hydrogen bond donor and acceptor of CoMSIA model also were generated, and new compounds were predicted by CoMFA and CoMSIA contour maps. To investigate the binding modes of the predicted compounds in the active site of Hsp90, a molecular docking simulation was carried out. MD simulations were also conducted to evaluate the obtained results on the best predicted compound and the best reported Hsp90 inhibitors in the 3D-QSAR model. Findings indicate that the predicted ligands were stable in the active site of Hsp90.  相似文献   

16.
17.
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3‐hydroxybutyrate) depolymerase were identified in two high‐resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281–295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3‐hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281–295 in comparison to the apo (substrate‐free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281–295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351–1361. © 2017 Wiley Periodicals, Inc.  相似文献   

18.
19.
Mendieta J  Ramírez G  Gago F 《Proteins》2001,44(4):460-469
Excitatory synaptic transmission is mediated by ionotropic glutamate receptors (iGluRs) through the induced transient opening of transmembrane ion channels. The three-dimensional structure of the extracellular ligand-binding core of iGluRs shares the overall features of bacterial periplasmic binding proteins (PBPs). In both families of proteins, the ligand-binding site is arranged in two domains separated by a cleft and connected by two peptide stretches. PBPs undergo a typical hinge motion of the two domains associated with ligand binding that leads to a conformational change from an open to a closed form. The common architecture suggests a similar closing mechanism in the ligand-binding core of iGluRs induced by the binding of specific agonists. Starting from the experimentally determined kainate-bound closed form of the S1S2 GluR2 construct, we have studied by means of molecular dynamics simulations the opening motion of the ligand-binding core in the presence and in the absence of both glutamate and kainate. Our results suggest that the opening/closing interdomain hinge motions are coupled to conformational changes in the insertion region of the transmembrane segments. These changes are triggered by the interaction of the agonists with the essential Glu 209 residue. A plausible mechanism for the coupling of agonist binding to channel gating is discussed.  相似文献   

20.
Due to its bioactivity and versatile applications, levan has appeared as a promising biomaterial. Levansucrase is responsible for the conversion of sucrose into levan. With the goal of enhancing levan production, the strategy for enhancing the stability of levansucrase is being intensively studied. To make proteins more stable under high temperatures, proline, the most rigid residue, can be introduced into previously flexible regions. Herein, G249, D250, N251, and H252 on the flexible coil close to the calcium binding site of Bacillus licheniformis levansucrase were replaced with proline. Mutations at G249P greatly enhance both the enzyme's thermodynamic and kinetic stability, while those at H252P improve solely the enzyme's kinetic stability. GPC analysis revealed that G249P synthesize more levan, but H252P generate primarily oligosaccharides. Molecular dynamics simulations (MD) and MM/GBSA analysis revealed that G249P mutation increased not only the stability of levansucrase, but also affinity toward fructan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号