首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundRpfB is a key factor in resuscitation from dormancy of Mycobacterium tuberculosis. This protein is a cell-wall glycosidase, which cleaves cell-wall peptidoglycan. RpfB is structurally complex and is composed of three types of domains, including a catalytic, a G5 and three DUF348 domains. Structural information is currently limited to a portion of the protein including only the catalytic and G5 domains. To gain insights into the structure and function of all domains we have undertaken structural investigations on a large protein fragment containing all three types of domains that constitute RpfB (RpfB3D).MethodsThe structural features of RpfB3D have been investigated combining x-ray crystallography and biophysical studies.Results and conclusionsThe crystal structure of RpfB3D provides the first structural characterization of a DUF348 domain and revealed an unexpected structural relationship with ubiquitin. The crystal structure also provides specific structural features of these domains explaining their frequent association with G5 domains.General significanceResults provided novel insights into the mechanism of peptidoglycan degradation necessary to the resuscitation of M. tuberculosis. Features of the DUF348 domain add structural data to a large set of proteins embedding this domain. Based on its structural similarity to ubiquitin and frequent association to the G5 domain, we propose to name this domain as G5-linked-Ubiquitin-like domain, UBLG5.  相似文献   

2.
Resuscitation promoting factor (Rpf) proteins, which hydrolyze the sugar chains in cell‐wall peptidoglycan (PG), play key roles in prokaryotic cell elongation, division, and escape from dormancy to vegetative growth. Like other bacteria, Mycobacterium tuberculosis (Mtb) expresses multiple Rpfs, none of which is individually essential. This redundancy has left unclear the distinct functions of the different Rpfs. To explore the distinguishing characteristics of the five Mtb Rpfs, we determined the crystal structure of the RpfE catalytic domain. The protein adopts the characteristic Rpf fold, but the catalytic cleft is narrower compared to Mtb RpfB. Also in contrast to RpfB, in which the substrate‐binding surfaces are negatively charged, the corresponding RpfE catalytic pocket and predicted peptide‐binding sites are more positively charged at neutral pH. The complete reversal of the electrostatic potential of the substrate‐binding site suggests that the different Rpfs function optimally at different pHs or most efficiently hydrolyze different micro‐domains of PG. These studies provide insights into the molecular determinants of the evolution of functional specialization in Rpfs.  相似文献   

3.
Many cases of active tuberculosis are thought to result from the reactivation of dormant Mycobacterium tuberculosis from a prior infection, yet remarkably little is known about the mechanism by which these non-sporulating bacteria reactivate. A family of extracellular bacterial proteins, known as resuscitation-promoting factors (Rpfs), has previously been shown to stimulate growth of dormant mycobacteria. While Rpf proteins are clearly peptidoglycan glycosidases, the mechanism and role of Rpf in mediating reactivation remains unclear. Here we use a yeast two-hybrid screen to identify potential binding partners of RpfB and report the interaction between RpfB and a putative mycobacterial endopeptidase, which we named Rpf-interacting protein A (RipA). This interaction was confirmed by in vitro and in vivo co-precipitation assays. The interacting domains map to the C-termini of both proteins, near predicted enzymatic domains. We show that RipA is a secreted, cell-associated protein, found in the same cellular compartment as RpfB. Both RipA and RpfB localize to the septa of actively growing bacteria by fluorescence microscopy. Finally, we demonstrate that RipA is capable of digesting cell wall material and is indeed a peptidoglycan hydrolase. The interaction between these two peptidoglycan hydrolases at the septum suggests a role for the complex in cell division, possibly during reactivation.  相似文献   

4.
Resuscitation of Mtb is crucial to the etiology of Tuberculosis, because latent tuberculosis is estimated to affect one-third of the world population. The resuscitation-promoting factor RpfB is mainly responsible for Mtb resuscitation from dormancy. Given the impact of latent Tuberculosis, RpfB represents an interesting target for tuberculosis drug discovery. However, no molecular models of substrate binding and catalysis are hitherto available for this enzyme. Here, we identified key interactions involved in substrate binding to RpfB by combining x-ray diffraction studies and computational approaches. The crystal structure of RpfB catalytic domain in complex with N,N′,N″-triacetyl-chitotriose, as described here, provides the first, to our knowledge, atomic representation of ligand recognition by RpfB and demonstrates that the strongest interactions are established by the N-acetylglucosamine moiety in the central region of the enzyme binding cleft. Molecular dynamics analyses provided information on the dynamic behavior of protein-substrate interactions and on the role played by the solvent in RpfB function. These data combined with sequence conservation analysis suggest that Glu-292 is the sole residue crucial for catalysis, implying that RpfB acts via the formation of an oxocarbenium ion rather than a covalent intermediate. Present data represent a solid base for the design of effective drug inhibitors of RpfB. Moreover, homology models were generated for the catalytic domains of all members of the Mtb Rpf family (RpfA-E). The analysis of these models unveiled analogies and differences among the different members of the Rpf protein family.Abbreviations used: Mtb, Mycobacterium tuberculosis; RpfB, Resuscitation promoting factor B; PDB, Protein Data Bank; RpfBc, catalytic domain of RpfB; NAG3, N,N'',N"-triacetyl-chitotriose; NAG6, hexa-N- acetylchitohexaose; MD, molecular dynamics; RMSF, root mean-square fluctuation  相似文献   

5.
Bacterial cell growth and division require coordinated cell wall hydrolysis and synthesis, allowing for the removal and expansion of cell wall material. Without proper coordination, unchecked hydrolysis can result in cell lysis. How these opposing activities are simultaneously regulated is poorly understood. In Mycobacterium tuberculosis, the resuscitation-promoting factor B (RpfB), a lytic transglycosylase, interacts and synergizes with Rpf-interacting protein A (RipA), an endopeptidase, to hydrolyze peptidoglycan. However, it remains unclear what governs this synergy and how it is coordinated with cell wall synthesis. Here we identify the bifunctional peptidoglycan-synthesizing enzyme, penicillin binding protein 1 (PBP1), as a RipA-interacting protein. PBP1, like RipA, localizes both at the poles and septa of dividing cells. Depletion of the ponA1 gene, encoding PBP1 in M. smegmatis, results in a severe growth defect and abnormally shaped cells, indicating that PBP1 is necessary for viability and cell wall stability. Finally, PBP1 inhibits the synergistic hydrolysis of peptidoglycan by the RipA-RpfB complex in vitro. These data reveal a post-translational mechanism for regulating cell wall hydrolysis and synthesis through protein–protein interactions between enzymes with antagonistic functions.  相似文献   

6.
Dormancy is a common strategy adopted by bacterial cells as a means of surviving adverse environmental conditions. For Streptomyces bacteria, this involves developing chains of dormant exospores that extend away from the colony surface. Both spore formation and subsequent spore germination are tightly controlled processes, and while significant progress has been made in understanding the underlying regulatory and enzymatic bases for these, there are still significant gaps in our understanding. One class of proteins with a potential role in spore-associated processes are the so-called resuscitation-promoting factors, or Rpfs, which in other actinobacteria are needed to restore active growth to dormant cell populations. The model species Streptomyces coelicolor encodes five Rpf proteins (RpfA to RfpE), and here we show that these proteins have overlapping functions during growth. Collectively, the S. coelicolor Rpfs promote spore germination and are critical for growth under nutrient-limiting conditions. Previous studies have revealed structural similarities between the Rpf domain and lysozyme, and our in vitro biochemical assays revealed various levels of peptidoglycan cleavage capabilities for each of these five Streptomyces enzymes. Peptidoglycan remodeling by enzymes such as these must be stringently governed so as to retain the structural integrity of the cell wall. Our results suggest that one of the Rpfs, RpfB, is subject to a unique mode of enzymatic autoregulation, mediated by a domain of previously unknown function (DUF348) located within the N terminus of the protein; removal of this domain led to significantly enhanced peptidoglycan cleavage.  相似文献   

7.
A protein superfamily with a “Domain of Unknown Function,”, DUF3349 (PF11829), is present predominately in Mycobacterium and Rhodococcus bacterial species suggesting that these proteins may have a biological function unique to these bacteria. We previously reported the inaugural structure of a DUF3349 superfamily member, Mycobacterium tuberculosis Rv0543c. Here, we report the structures determined for three additional DUF3349 proteins: Mycobacterium smegmatis MSMEG_1063 and MSMEG_1066 and Mycobacterium abscessus MAB_3403c. Like Rv0543c, the NMR solution structure of MSMEG_1063 revealed a monomeric five α‐helix bundle with a similar overall topology. Conversely, the crystal structure of MSMEG_1066 revealed a five α‐helix protein with a strikingly different topology and a tetrameric quaternary structure that was confirmed by size exclusion chromatography. The NMR solution structure of a fourth member of the DUF3349 superfamily, MAB_3403c, with 18 residues missing at the N‐terminus, revealed a monomeric α‐helical protein with a folding topology similar to the three C‐terminal helices in the protomer of the MSMEG_1066 tetramer. These structures, together with a GREMLIN‐based bioinformatics analysis of the DUF3349 primary amino acid sequences, suggest two subfamilies within the DUF3349 family. The division of the DUF3349 into two distinct subfamilies would have been lost if structure solution had stopped with the first structure in the DUF3349 family, highlighting the insights generated by solving multiple structures within a protein superfamily. Future studies will determine if the structural diversity at the tertiary and quaternary levels in the DUF3349 protein superfamily have functional roles in Mycobacteria and Rhodococcus species with potential implications for structure‐based drug discovery.  相似文献   

8.
Mycobacterium tuberculosis is able to establish a non-replicating state and survive in an intracellular habitat for years. Resuscitation of dormant M. tuberculosis bacteria is promoted by resuscitation-promoting factors (Rpfs), which are secreted from slowly replicating bacteria close to dormant bacteria. Here we report the crystal structure of a truncated form of RpfB (residues 194-362), the sole indispensable Rpf of the five Rpfs encoded in this bacterium genome. The structure, denoted as ΔDUFRpfB, exhibits a comma-like shape formed by a lysozyme-like globular catalytic domain and an elongated G5 domain, which is widespread among cell surface binding proteins. The G5 domain, whose structure was previously uncharacterised, presents some peculiar features. The basic structural motif of this domain, which represents the tail of the comma-like structure, is a novel super-secondary-structure element, made of two β-sheets interconnected by a pseudo-triple helix. This intricate organisation leads to the exposure of several backbone hydrogen-bond donors/acceptors. Mutagenesis analyses and solution studies indicate that this protein construct as well as the full-length form are elongated monomeric proteins. Although ΔDUFRpfB does not self-associate, the exposure of structural elements (backbone H-bond donors/acceptors and hydrophobic side chains) that are usually buried in globular proteins is typically associated with adhesive properties. This suggests that the RpfB G5 domain has a cell-wall adhesive function, which allows the catalytic domain to be properly oriented for the cleavage reaction. Interestingly, sequence comparisons indicate that these structural features are also shared by G5 domains involved in biofilm formation.  相似文献   

9.
Resuscitation-promoting factor (Rpf) is a muralytic enzyme that increases the culturability of dormant bacteria. Recently, considerable progress has been made in understanding the structure, function and physiological role of Rpfs in different organisms, most notably the major human pathogen, Mycobacterium tuberculosis , which encodes multiple rpf -like genes. A key unresolved question, however, concerns the relationship between the predicted biochemical activity of Rpfs – cleavage of the β-1,4 glycosidic bond in the glycan backbone of peptidoglycan – and their effect on culturability. In M. tuberculosis , the interaction between RpfB and the d,l -endopeptidase, Rpf interacting protein A (RipA), enables these proteins to synergistically degrade peptidoglycan to facilitate growth. Furthermore, the combined action of Rpfs with RipA and other peptidoglycan hydrolases might produce muropeptides that could exert diverse biological effects through host and/or bacterial signaling, the latter involving serine/threonine protein kinases. Here, we explore these possibilities in the context of the structure and composition of mycobacterial peptidoglycan. Clearly, a deeper understanding of the role of Rpfs and associated peptidoglycan remodeling enzymes in bacterial growth and culturability is necessary to establish the significance of dormancy and resuscitation in diseases such as tuberculosis, which are associated with long-term persistence of viable bacterial populations recalcitrant to antibiotic and immune clearance.  相似文献   

10.
Mycobacterium tuberculosis ArfA (Rv0899) is a membrane protein encoded by an operon that is required for supporting bacterial growth in acidic environments. Its C-terminal domain (C domain) shares significant sequence homology with the OmpA-like family of peptidoglycan-binding domains, suggesting that its physiological function in acid stress protection may be related to its interaction with the mycobacterial cell wall. Previously, we showed that ArfA forms three independently structured modules, and we reported the structure of its central domain (B domain). Here, we describe the high-resolution structure and dynamics of the C domain, we identify ArfA as a peptidoglycan-binding protein and we elucidate the molecular basis for its specific recognition of diaminopimelate-type peptidoglycan. The C domain of ArfA adopts the characteristic fold of the OmpA-like family. It exhibits pH-dependent conformational dynamics (with significant heterogeneity at neutral pH and a more ordered structure at acidic pH), which could be related to its acid stress response. The C domain associates tightly with polymeric peptidoglycan isolated from M. tuberculosis and also associates with a soluble peptide intermediate of peptidoglycan biosynthesis. This enabled us to characterize the peptidoglycan binding site where five highly conserved ArfA residues, including two key arginines, establish the specificity for diaminopimelate- but not Lys-type peptidoglycan. ArfA is the first peptidoglycan-binding protein to be identified in M. tuberculosis. Its functions in acid stress protection and peptidoglycan binding suggest a link between the acid stress response and the physicochemical properties of the mycobacterial cell wall.  相似文献   

11.
A subset of proteins containing NlpC/P60 domains are bacterial peptidoglycan hydrolases that cleave noncanonical peptide linkages and contribute to cell wall remodeling as well as cell separation during late stages of division. Some of these proteins have been shown to cleave peptidoglycan in Mycobacterium tuberculosis and play a role in Mycobacterium marinum virulence of zebra fish; however, there are still significant knowledge gaps concerning the molecular function of these proteins in Mycobacterium avium subspecies paratuberculosis (MAP). The MAP genome sequence encodes five NlpC/P60 domain‐containing proteins. We describe atomic resolution crystal structures of two such MAP proteins, MAP_1272c and MAP_1204. These crystal structures, combined with functional assays to measure peptidoglycan cleavage activity, led to the observation that MAP_1272c does not have a functional catalytic core for peptidoglycan hydrolysis. Furthermore, the structure and sequence of MAP_1272c demonstrate that the catalytic residues normally required for hydrolysis are absent, and the protein does not bind peptidoglycan as efficiently as MAP_1204. While the NlpC/P60 catalytic triad is present in MAP_1204, changing the catalytic cysteine‐155 residue to a serine significantly diminished catalytic activity, but did not affect binding to peptidoglycan. Collectively, these findings suggest a broader functional repertoire for NlpC/P60 domain‐containing proteins than simply hydrolases.  相似文献   

12.
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.  相似文献   

13.
The WxL domain is found on the cell surface of many bacteria, most of which are commensal gut bacteria. Its functions are generally identified as being related to virulence and/or peptidoglycan attachment, but there is so far no clear function or structure for this domain. Here, a range of bioinformatics tools were used to clarify the structure and function. These indicate that WxL domains occur in cell surface-associated gene clusters that always contain a small WxL, large WxL and DUF916 domain; and that the small and large WxL proteins have distinct structure despite sharing two conserved WxL motifs. The two WxL motifs form a hydrophobic surface buried inside the protein. The likely function of the WxL domain is to attach to bacterial peptidoglycan, forming a platform to allow associated domains in the cluster to interact with host proteins.  相似文献   

14.
Hett EC  Chao MC  Deng LL  Rubin EJ 《PLoS pathogens》2008,4(2):e1000001
The final stage of bacterial cell division requires the activity of one or more enzymes capable of degrading the layers of peptidoglycan connecting two recently developed daughter cells. Although this is a key step in cell division and is required by all peptidoglycan-containing bacteria, little is known about how these potentially lethal enzymes are regulated. It is likely that regulation is mediated, at least partly, through protein-protein interactions. Two lytic transglycosylases of mycobacteria, known as resuscitation-promoting factor B and E (RpfB and RpfE), have previously been shown to interact with the peptidoglycan-hydrolyzing endopeptidase, Rpf-interacting protein A (RipA). These proteins may form a complex at the septum of dividing bacteria. To investigate the function of this potential complex, we generated depletion strains in M. smegmatis. Here we show that, while depletion of rpfB has no effect on viability or morphology, ripA depletion results in a marked decrease in growth and formation of long, branched chains. These growth and morphological defects could be functionally complemented by the M. tuberculosis ripA orthologue (rv1477), but not by another ripA-like orthologue (rv1478). Depletion of ripA also resulted in increased susceptibility to the cell wall-targeting beta-lactams. Furthermore, we demonstrate that RipA has hydrolytic activity towards several cell wall substrates and synergizes with RpfB. These data reveal the unusual essentiality of a peptidoglycan hydrolase and suggest a novel protein-protein interaction as one way of regulating its activity.  相似文献   

15.
Decades of study have revealed the fine chemical structure of the bacterial peptidoglycan cell wall, but the arrangement of the peptidoglycan strands within the wall has been challenging to define. The application of electron cryotomography (ECT) and new methods for fluorescent labelling of peptidoglycan are allowing new insights into wall structure and synthesis. Two articles in this issue examine peptidoglycan structures in the model Gram‐positive species Bacillus subtilis. Beeby et al. combined visualization of peptidoglycan using ECT with molecular modelling of three proposed arrangements of peptidoglycan strands to identify the model most consistent with their data. They argue convincingly for a Gram‐positive wall containing multiple layers of peptidoglycan strands arranged circumferentially around the long axis of the rod‐shaped cell, an arrangement similar to the single layer of peptidoglycan in similarly shaped Gram‐negative cells. Tocheva et al. examined sporulating cells using ECT and fluorescence microscopy to demonstrate the continuous production of a thin layer of peptidoglycan around the developing spore as it is engulfed by the membrane of the adjacent mother cell. The presence of this peptidoglycan in the intermembrane space allows the refinement of a model for engulfment, which has been known to include peptidoglycan synthetic and lytic functions.  相似文献   

16.
Tuberculosis (TB) is still a major public health problem, compounded by the human immunodeficiency virus (HIV)-TB co-infection and recent emergence of multidrug-resistant (MDR) and extensively drug resistant (XDR)-TB. In this context, aspartokinase of mycobacterium tuberculosis has drawn attention for designing novel anti-TB drugs. Asp kinase is an enzyme responsible for the synthesis of 4-phospho-L-aspartate from L-aspartate and involved in the branched biosynthetic pathway leading to the synthesis of amino acids lysine, threonine, methionine and isoleucine. An intermediate of lysine biosynthetic branch, mesodiaminopimelate is also a component of the peptidoglycan which is a component of bacterial cell wall. To interfere with the production of all these amino acids and cell wall, it is possible to inhibit Asp kinase activity. This can be achieved using Asp kinase inhibitors. In order to design novel Asp kinase inhibitors as effective anti-TB drugs, it is necessary to have an understanding of the binding sites of Asp kinase. As no crystal structure of the enzyme has yet been published, we built a homology model of Asp kinase using the crystallized Asp kinase from M. Jannaschii, as template structures (2HMF and 3C1M). After the molecular dynamics refinement, the optimized homology model was assessed as a reliable structure by PROCHECK, ERRAT, WHAT-IF, PROSA2003 and VERIFY-3D. The results of molecular docking studies with natural substrates, products and feedback inhibitors are in agreement with the published data and showed that ACT domain plays an important role in binding to ligands. Based on the docking conformations, pharmacophore model can be developed by probing the common features of ligands. By analyzing the results, ACT domain architecture, certain key residues that are responsible for binding to feedback inhibitors and natural substrates were identified. This would be very helpful in understanding the blockade mechanism of Asp kinase and providing insights into rational design of novel Asp kinase inhibitors for M.tuberculosis.  相似文献   

17.
In bacteria, cytokinesis is dependent on lytic enzymes that facilitate remodelling of the cell wall during constriction. In this work, we identify a thus far uncharacterized periplasmic protein, DipM, that is required for cell division and polarity in Caulobacter crescentus. DipM is composed of four peptidoglycan binding (LysM) domains and a C‐terminal lysostaphin‐like (LytM) peptidase domain. It binds to isolated murein sacculi in vitro, and is recruited to the site of constriction through interaction with the cell division protein FtsN. Mutational analyses showed that the LysM domains are necessary and sufficient for localization of DipM, while its peptidase domain is essential for function. Consistent with a role in cell wall hydrolysis, DipM was found to interact with purified murein sacculi in vitro and to induce cell lysis upon overproduction. Its inactivation causes severe defects in outer membrane invagination, resulting in a significant delay between cytoplasmic compartmentalization and final separation of the daughter cells. Overall, these findings indicate that DipM is a periplasmic component of the C. crescentus divisome that facilitates remodelling of the peptidoglycan layer and, thus, coordinated constriction of the cell envelope during the division process.  相似文献   

18.
We have isolated cell wall peptidoglycan associated proteins (CW-Pr) of Mycobacterium tuberculosis H37Ra by chemical treatment with trifluoromethanesulfonic acid:anisole (2:1), which further resolved into 71, 60 and 45 kDa proteins on SDS-PAGE. A study was carried out to investigate the immunoreactivity of these proteins with blood samples from 4 categories, including 15 tuberculous patients (TB), 5 tuberculous patients on ATT (TBT), 10 PPD non-reactive healthy controls (HPPD?) and 11 PPD reactive healthy controls (HPPD+). Comparing the proliferative responses to cell wall protein antigens, it was observed that the 71 kDa protein gave maximum stimulation with PBMCs from the TB and HPPD+ groups. The adherent PBMCs from the TB group also demonstrated enhanced phagocytosis, particularly in the presence of 71 and 45 kDa proteins, and the phagocytic index was significantly higher (P < 0.05) than the TBT group. However, PBMCs from of the groups recognized the 60 kDa cell wall antigen. Our results suggest that the 71 kDa protein from the cell wall of M. tuberculosis is highly immunogenic.  相似文献   

19.
Staphylococcus aureus is an opportunistic pathogen that can cause soft tissue infections but is also a frequent cause of foodborne illnesses. One contributing factor for this food association is its high salt tolerance allowing this organism to survive commonly used food preservation methods. How this resistance is mediated is poorly understood, particularly during long-term exposure. In this study, we used transposon sequencing (TN-seq) to understand how the responses to osmotic stressors differ. Our results revealed distinctly different long-term responses to NaCl, KCl and sucrose stresses. In addition, we identified the DUF2538 domain containing gene SAUSA300_0957 (gene 957) as essential under salt stress. Interestingly, a 957 mutant was less susceptible to oxacillin and showed increased peptidoglycan crosslinking. The salt sensitivity phenotype could be suppressed by amino acid substitutions in the transglycosylase domain of the penicillin-binding protein Pbp2, and these changes restored the peptidoglycan crosslinking to WT levels. These results indicate that increased crosslinking of the peptidoglycan polymer can be detrimental and highlight a critical role of the bacterial cell wall for osmotic stress resistance. This study will serve as a starting point for future research on osmotic stress response and help develop better strategies to tackle foodborne staphylococcal infections.  相似文献   

20.
The multifunctional‐autoprocessing repeats‐in‐toxin (MARTX) toxins are bacterial protein toxins that serve as delivery platforms for cytotoxic effector domains. The domain of unknown function in position 5 (DUF5) effector domain is present in at least six different species' MARTX toxins and as a hypothetical protein in Photorhabdus spp. Its presence increases the potency of the Vibrio vulnificus MARTX toxin in mouse virulence studies, indicating DUF5 directly contributes to pathogenesis. In this work, DUF5 is shown to be cytotoxic when transiently expressed in HeLa cells. DUF5 localized to the plasma membrane dependent upon its C1 domain and the cells become rounded dependent upon its C2 domain. Both full‐length DUF5 and the C2 domain caused growth inhibition when expressed in Saccharomyces cerevisiae. A structural model of DUF5 was generated based on the structure of Pasteurella multocida toxin facilitating localization of the cytotoxic activity to a 186 amino acid subdomain termed C2A. Within this subdomain, an alanine scanning mutagenesis revealed aspartate‐3721 and arginine‐3841 as residues critical for cytotoxicity. These residues were also essential for HeLa cell intoxication when purified DUF5 fused to anthrax toxin lethal factor was delivered cytosolically. Thermal shift experiments indicated that these conserved residues are important to maintain protein structure, rather than for catalysis. The Aeromonas hydrophila MARTX toxin DUF5Ah domain was also cytotoxic, while the weakly conserved C1–C2 domains from P. multocida toxin were not. Overall, this study is the first demonstration that DUF5 as found in MARTX toxins has cytotoxic activity that depends on conserved residues in the C2A subdomain. Proteins 2014; 82:2643–2656. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号