首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we have investigated the binding affinity of tofacitinib with human serum albumin (HSA) under simulated physiological conditions by using UV–visible spectroscopy, fluorescence quenching measurements, dynamic light scattering (DLS), differential scanning calorimetry (DSC) and molecular docking methods. The obtained results demonstrate that fluorescence intensity of HSA gets quenched by tofacitinib and quenching occurs in static manner. Binding parameters calculated from modified Stern–Volmer equation shows that the drug binds to HSA with a binding constant in the order of 105. Synchronous fluorescence data deciphered the change in the microenvironment of tryptophan residue in HSA. UV spectroscopy and DLS measurements deciphered complex formation and reduction in hydrodynamic radii of the protein, respectively. Further DSC results show that tofacitinib increases the thermo stability of HSA. Hydrogen bonding and hydrophobic interaction are the main binding forces between HSA and tofacitinib as revealed by docking results.  相似文献   

2.
In this work, fluorescence spectroscopy in combination with circular dichroism spectroscopy and molecular modeling was employed to investigate the binding of 10-hydroxycamptothecin (HCPT) to human serum albumin (HSA) under simulative physiological conditions. The experiment results showed that the fluorescence quenching of HSA by HCPT was a result of the formation of HCPT–HSA complex. The corresponding association constants (K a) between HCPT and HSA at four different temperatures were determined according to the modified Stern–Volmer equation. The results of thermodynamic parameters ΔG, ΔH, and ΔS indicated that hydrogen bonds and van der Waals forces played major roles for HCPT–HSA association. Site marker competitive displacement experiment indicated that the binding of HCPT to HSA primarily took place in sub-domain IIA (site I). Molecular docking study further confirmed the binding mode and the binding site obtained by fluorescence and site marker competitive experiments. The conformational investigation showed that the presence of HCPT decreased the α-helical content of HSA and induced the slight unfolding of the polypeptides of protein, which confirmed some micro-environmental and conformational changes of HSA molecules.  相似文献   

3.
Titanium dioxide nanoparticles (TiO2-NPs) interaction with human serum albumin (HSA) and DNA was studied by UV–visible spectroscopy, spectrofluorescence, circular dichroism (CD), and transmission electron microscopy (TEM) to analyze the binding parameters and protein corona formation. TEM revealed protein corona formation on TiO2-NPs surface due to adsorption of HSA. Intrinsic fluorescence quenching data suggested significant binding of TiO2-NPs (avg. size 14.0 nm) with HSA. The Stern–Volmer constant (Ksv) was determined to be 7.6 × 102 M?1 (r2 = 0.98), whereas the binding constant (Ka) and number of binding sites (n) were assessed to be 5.82 × 102 M?1 and 0.97, respectively. Synchronous fluorescence revealed an apparent decrease in fluorescence intensity with a red shift of 2 nm at Δλ = 15 nm and Δλ = 60 nm. UV–visible analysis also provided the binding constant values for TiO2-NPs–HSA and TiO2-NPs-DNA complexes as 2.8 × 102 M?1 and 5.4 × 103 M?1. The CD data demonstrated loss in α-helicity of HSA and transformation into β-sheet, suggesting structural alterations by TiO2-NPs. The docking analysis of TiO2-NPs with HSA revealed its preferential binding with aromatic and non-aromatic amino acids in subdomain IIA and IB hydrophobic cavity of HSA. Also, the TiO2-NPs docking revealed the selective binding with A-T bases in minor groove of DNA.  相似文献   

4.
In the present work, we have examined the binding parameters, thermodynamics, and stability of human serum albumin (HSA) isoforms at pH 7.4 and 9.0, using spectroscopic, calorimetric, and molecular docking methods in the presence of water-soluble camptothecin analog irinotecan hydrochloride (CPT-11). We observed that CPT-11 binds to HSA through a static quenching procedure of ground-state complex formation with N-isoform and B-isoform. Hydrogen bond and hydrophobic interactions are the major governing forces that participating in the formation of protein–drug complex. To determine the binding site of CPT-11 within HSA molecules, we also have performed molecular docking experiments. We explored the CPT-11-mediated stability and modulation of HSA by performing dynamic light scattering (DLS) and differential scanning calorimetry (DSC) experiments. DLS and DSC techniques are used to determine the size and the melting point (Tm) of HSA, which was decreased in the presence of CPT-11. Therefore, CPT-11 plays an important role in HSA stability and protein–ligand interactions. The present study provides valuable information in the field of pharmacokinetics, pharmaco-dynamics, and drug discovery.  相似文献   

5.
The interaction of carbonylcyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP) with human serum albumin (HSA) and human transferrin (HTF) was investigated using multiple spectroscopy, molecular modeling, zeta‐potential and conductometry measurements of aqueous solutions at pH 7.4. The fluorescence, UV/vis and polarization fluorescence spectroscopy data disclosed that the drug–protein complex formation occurred through a remarkable static quenching. Based on the fluorescence quenching, two sets of binding sites with distinct affinities for FCCP existed in the two proteins. Steady‐state and polarization fluorescence analysis showed that there were more affinities between FCCP and HSA than HTF. Far UV‐CD and synchronous fluorescence studies indicated that FCCP induced more structural changes on HSA. The resonance light scattering (RLS) and zeta‐potential measurements suggested that HTF had a greater resistance to drug aggregation, whereas conductometry measurements expressed the presence of free ions improving the resistance of HSA to aggregation. Thermodynamic measurements implied that a combination of electrostatic and hydrophobic forces was involved in the interaction between FCCP with both proteins. The phase diagram plots indicated that the presence of second binding site on HSA and HTF was due to the existence of intermediate structures. Site marker competitive experiments demonstrated that FCCP had two distinct binding sites in HSA which were located in sub‐domains IIA and IIIA and one binding site in the C‐lobe of HTF as confirmed by molecular modeling. The obtained results suggested that both proteins could act as drug carriers, but that the HSA potentially had a higher capacity for delivering FCCP to cancerous tissues. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

Molecular interaction of the 3,4-methylenedioxy-β-nitrostyrene (MNS), an inhibitor of platelet aggregation with the main transport protein, albumin from human serum (HSA) was explored using absorption, fluorescence and circular dichroism (CD) spectroscopy in combination with in silico analyses. The MNS–HSA complexation was corroborated from the fluorescence and absorption spectral results. Implication of static quenching mechanism for MNS–HSA system was predicted from the Stern–Volmer constant, KSV-temperature relationship as well as the bimolecular quenching rate constant, kq values. Stabilization of the complex was affirmed by the value of the binding constant (Ka = 0.56-1.48?×?104 M?1). Thermodynamic data revealed that the MNS–HSA association was spontaneously driven mainly through hydrophobic interactions along with van der Waal’s interaction and H-bonds. These results were well supported by in silico interpretations. Far-UV and near-UV CD spectral results manifested small variations in the protein’s secondary and tertiary structures, respectively, while three-dimensional fluorescence spectra displayed microenvironmental fluctuations around protein’s fluorophores, upon MNS binding. Significant improvement in the protein’s thermostability was evident from the temperature-stability results of MNS-bound HSA. Binding locus of MNS, as identified by competitive drug displacement findings as well as in silico analysis, was found to be located in subdomain IIA (Sudlow’s site I) of the protein.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
Multiple spectroscopic techniques, such as fluorescence, absorption, and circular dichroism along with in silico studies were used to characterize the binding of a potent inhibitor molecule, CCG1423 to the major transport protein, human serum albumin (HSA). Fluorescence and absorption spectroscopic results confirmed CCG1423–HSA complex formation. A strong binding affinity stabilized the CCG1423–HSA complex, as evident from the values of the binding constant (Ka = 1.35 × 106–5.43 × 105 M?1). The KSV values for CCG1423–HSA system were inversely correlated with temperature, suggesting the involvement of static quenching mechanism. Thermodynamic data anticipated that CCG1423–HSA complexation was mainly driven by hydrophobic and van der Waals forces as well as hydrogen bonds. In silico analysis also supported these results. Three-dimensional fluorescence and circular dichroism spectral analysis suggested microenvironmental perturbations around protein fluorophores and structural (secondary and tertiary) changes in the protein upon CCG1423 binding. CCG1423 binding to HSA also showed some protection against thermal denaturation. Site-specific marker-induced displacement results revealed CCG1423 binding to Sudlow’s site I of HSA, which was also confirmed by the computational results. A few common ions were also found to interfere with the CCG1423–HSA interaction.  相似文献   

8.
The interaction between mefloquine (MEF), the antimalarial drug, and human serum albumin (HSA), the main carrier protein in blood circulation, was explored using fluorescence, absorption, and circular dichroism spectroscopic techniques. Quenching of HSA fluorescence with MEF was characterized as static quenching and thus confirmed the complex formation between MEF and HSA. Association constant values for MEF-HSA interaction were found to fall within the range of 3.79-5.73 × 104 M˗1 at various temperatures (288, 298, and 308 K), which revealed moderate binding affinity. Hydrogen bonds and hydrophobic interactions were predicted to connect MEF and HSA together in the MEF-HSA complex, as deduced from the thermodynamic data (ΔS = +133.52 J mol−1 K−1 and ΔH = +13.09 kJ mol−1) of the binding reaction and molecular docking analysis. Three-dimensional fluorescence spectral analysis pointed out alterations in the microenvironment around aromatic amino acid (tryptophan and tyrosine) residues of HSA consequent to the addition of MEF. Circular dichroic spectra of HSA in the wavelength ranges of 200-250 and 250-300 nm hinted smaller changes in the protein's secondary and tertiary structures, respectively, induced by MEF binding. Noncovalent conjugation of MEF to HSA bettered protein thermostability. Site marker competitive drug displacement results suggested HSA Sudlow's site I as the MEF binding site, which was also supported by molecular docking analysis.  相似文献   

9.
Abstract

Tyrphostin 9 (Tyr 9) is a potent platelet-derived growth factor receptor (PDGFR) inhibitor, which induces apoptosis in various cancer cell types. The binding of Tyr 9 to the major transport protein, human serum albumin (HSA) was investigated using several spectroscopic techniques and molecular docking method. Fluorescence quenching titration results showed progressive decrease in the protein fluorescence with increasing drug concentrations. A decreasing trend of the Stern-Volmer constant, K sv with increasing temperature characterized the drug-induced quenching as static quenching, thus pointed towards the formation of Tyr 9–HSA complex. The binding constant of Tyr 9–HSA interaction was found to lie within the range 3.48–1.69?×?105 M?1 at three different temperatures, i.e. 15 °C, 25 °C and 35?°C, respectively and suggested intermediate binding affinity between Tyr 9 and HSA. The drug–HSA complex seems to be stabilized by hydrophobic forces, van der Waals forces and hydrogen bonds, as suggested from the thermodynamic data as well as molecular docking results. The far-UV and the near-UV CD spectral results showed slight alteration in the secondary and tertiary structures, respectively, of the protein upon Tyr 9 binding. Interaction of Tyr 9 with HSA also produced microenvironmental perturbations around protein fluorophores, as evident from the three-dimensional fluorescence spectral results but increased protein’s thermal stability. Both competitive drug binding results and molecular docking analysis suggested Sudlow’s Site I of HSA as the preferred Tyr 9 binding site.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
In this contribution, the enantioselective interactions between diclofop (DC) and human serum albumin (HSA) were explored by steady‐state and 3D fluorescence, ultraviolet‐visible spectroscopy (UV‐vis), and molecular modeling. The binding constants between R‐DC and HSA were 0.9213 × 105, 0.9118 × 105, and 0.9009 × 105 L · mol‐1 at 293, 303, 313 K, respectively. Moreover, the binding constants of S‐DC for HSA were 1.4766 × 105, 1.2899 × 105, and 1.0882 × 105 L · mol‐1 at 293, 303, and 313 K individually. Such consequences markedly implied the binding between DC enantiomers and HSA were enantioselective with higher affinity for S‐DC. Steady‐state fluorescence study evidenced the formation of DC‐HSA complex and there was a single class of binding site on HSA. The thermodynamic parameters (ΔH, ΔS, ΔG) of the reaction clearly indicated that hydrophobic effects and H‐bonds contribute to the formation of DC‐HSA complex, which was in excellent agreement with molecular simulations. In addition, both site‐competitive replacement and molecular modeling suggested that DC enantiomers were located within the binding pocket of Sudlow's site II. Furthermore, the alterations of HSA secondary structure in the presence of DC enantiomers were verified by UV‐vis absorption and 3D fluorescence spectroscopy. This study can provide important insight into the enantioselective interaction of physiological protein HSA with chiral aryloxyphenoxy propionate herbicides and gives support to the use of HSA for chiral pesticides ecotoxicology and environmental risk assessment. Chirality 25:719–725, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The loading efficacy of folic acid with serum proteins human serum albumin (HSA), bovine serum albumin (BSA), and beta-lactoglobulin (β-LG) was analyzed and the effect of acid conjugation on protein morphology was determined. Structural analysis showed that folic acid binds HSA, BSA, and β-LG via hydrophilic, hydrophobic, and H-bonding contacts with BSA forming more stable conjugates than HSA and β-LG. Molecular modeling showed the presence of several H-bonding systems, stabilizing acid–protein conjugates. Folic acid conjugation alters protein conformation by major alterations of α-helix and β-sheet. TEM images showed major protein morphological changes inducing protein aggregation upon acid interaction. The results show that serum proteins can deliver folic acid to target molecules.  相似文献   

12.
The heat induced aggregation of human serum albumin (HSA) with and without an equimolar amount of Cu(II) and Zn(II) was investigated by using optical absorption, fluorescence, AFM and EPR spectroscopy. Turbidity experiments as a function of temperature indicate that the protein aggregation occurs after the melting of the protein. The kinetic of HSA aggregation, investigated between 60 and 70 °C by monitoring the optical density changes at 400 nm on a 180 min time window, shows an exponential growth with a rate that increases with the temperature. Fluorescence of the thioflavin T evidences a significant increase of the intensity at 480 nm at increasing incubation time. These results combined with AFM experiments show that the protein aggregates are elongated oligomers with fibrillar-like features. The absence of a lag-phase suggests that the early stage aggregation of HSA follows a downhill pathway that does not require the formation of an organized nucleus. The presence of Cu(II) and Zn(II) ions does not affect the thermally induced aggregation process and the morphology of HSA aggregates. The result is compatible with the binding of the metal ions to the protein in the native state and with the high conformational stability of HSA.  相似文献   

13.
The interaction between Meropenem drug and human serum albumin (HSA) has been studied under physiological condition in Tris–HCl buffer solution at pH 7.4 by various spectroscopic (UV spectra, fluorescence spectra, CD spectra), Photo–induced HSA cleavage, and molecular docking techniques. The results of fluorescence titration revealed that the Meropenem strongly quench the intrinsic fluorescence of HSA through a static quenching procedure. Binding constants (Kb) and the number of binding sites (n ? 1) were calculated using modified Stern–Volmer equations. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were calculated which revealed that the electrostatic and hydrogen bonding interactions play a major role in HSA–Meropenem association. The distance r between donor (HSA) and acceptor (Meropenem) was obtained according to fluorescence resonance energy transfer (FRET) and the alterations of HSA secondary structure induced by Meropenem were confirmed by FT–IR and CD measurements. The molecular docking technique was utilized to ascertain the mechanism and mode of action towards the molecular target HSA indicating that Meropenem was located within the subdomain IIA of protein by electrostatic interactions and hydrogen bonds, consistent with the corresponding experimental results. Additionally, Meropenem shows efficient photo–induced HSA cleavage. Our results may provide valuable information to understand the mechanistic pathway of drug delivery and to pharmacological behavior of drug.
  • Research Highlights
  • The interaction of Meropenem with HSA was studied by spectroscopic, photo-induced cleavage and molecular docking techniques.

  • The secondary structure of protein has been changed upon the interaction with Meropenem.

  • Subdomain IIA of the HSA is found to be the main binding site for Meropenem.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
Interaction of a tyrosine kinase inhibitor, vandetanib (VDB), with the major transport protein in the human blood circulation, human serum albumin (HSA), was investigated using fluorescence spectroscopy, circular dichroism (CD) spectroscopy, and molecular docking analysis. The binding constant of the VDB–HSA system, as determined by fluorescence quenching titration method was found in the range, 8.92–6.89?×?103?M?1 at three different temperatures, suggesting moderate binding affinity. Furthermore, decrease in the binding constant with increasing temperature revealed involvement of static quenching mechanism, thus affirming the formation of the VDB–HSA complex. Thermodynamic analysis of the binding reaction between VDB and HSA yielded positive ΔS (52.76 J?mol?1 K?1) and negative ΔH (?6.57?kJ?mol?1) values, which suggested involvement of hydrophobic interactions and hydrogen bonding in stabilizing the VDB–HSA complex. Far-UV and near-UV CD spectral results suggested alterations in both secondary and tertiary structures of HSA upon VDB-binding. Three-dimensional fluorescence spectral results also showed significant microenvironmental changes around the Trp residue of HSA consequent to the complex formation. Use of site-specific marker ligands, such as phenylbutazone (site I marker) and diazepam (site II marker) in competitive ligand displacement experiments indicated location of the VDB binding site on HSA as Sudlow’s site I (subdomain IIA), which was further established by molecular docking results. Presence of some common metal ions, such as Ca2+, Zn2+, Cu2+, Ba2+, Mg2+, and Mn2+ in the reaction mixture produced smaller but significant alterations in the binding affinity of VDB to HSA.  相似文献   

15.
Sodium caprylate was added to a pharmaceutical-grade human serum albumin (HSA) to stabilize the product. In this study we have aimed to establish how caprylate ligand protects HSA from thermal degradation. The fatty acid stabilizer was first removed from commercial HSA by charcoal treatment. Cleaned HSA was made to 10% w/v in pH 7.4 buffered solutions and doped with sodium caprylate in serial concentrations up to 0.16 mmol/g-protein. These solutions as well as a commercial HSA, human serum, and enriched-albumin fraction were subjected to differential scanning calorimetry (DSC) within the temperature range of 37–90°C at a 5.0°C/min scanning rate. The globular size of the cleaned HSA solutions was measured by dynamic light scattering. The denaturing temperatures for albumin with sodium caprylate and a commercial one were significantly higher than for albumin only. It was found that the protein globules of cleaned HSA were not as stable as that of the native one due to aggregation, and the caprylate ion may reduce the aggregation by enlarging the globules’ electrical double layer. A rational approximation of the Lumry-Eyring protein denaturation model was used to treat DSC denaturing endotherms. The system turned from irreversible dominant Scheme: to reversible dominant Scheme: with the increase in caprylate concentration from null to ~0.08 mmol/g-protein. It was postulated that the caprylate ligand may decrease the rate of reversible unfolding as it binds to the IIIA domain which is prone to reversible unfolding/refolding and causes further difficulty for irreversible denaturation which, in turn, HSA can be stabilized.KEY WORDS: differential scanning calorimetry, human serum albumin, Lumry-Eyring model, protein denaturation, sodium caprylate  相似文献   

16.
Three hydroxylated polybrominated diphenyl ethers (OH‐PBDEs), 3‐OH‐BDE‐47, 5‐OH‐BDE‐47, and 6‐OH‐BDE‐47, were selected to investigate the interactions between OH‐PBDEs with human serum albumin (HSA) under physiological conditions. The observed fluorescence quenching can be attributed to the formation of complexes between HSA and OH‐PBDEs. The thermodynamic parameters at different temperatures indicate that the binding was caused by hydrophobic forces and hydrogen bonds. Molecular modeling and three‐dimensional fluorescence spectrum showed conformational and microenvironmental changes in HSA. Circular dichroism analysis showed that the addition of OH‐PBDEs changed the conformation of HSA with a minor reduction in α‐helix content and increase in β‐sheet content. Furthermore, binding distance r between the donor (HSA) and acceptor (three OH‐PBDEs) calculated using Förster's nonradiative energy transfer theory was <7 nm; therefore, the quenching mechanisms for the binding between HSA and OH‐PBDEs involve static quenching and energy transfer. Combined with molecular dynamics simulations, the binding free energies (ΔG bind ) were calculated using molecular mechanics/Poisson ? Boltzmann surface area method, and the crucial residues in HSA were identified.  相似文献   

17.
Human serum albumin (HSA) is one of the main proteins involved in the binding of drugs and small solutes in blood or serum. This study examined the changes in chromatographic properties that occur for immobilized HSA following the chemical modification of HSA's lone tryptophan residue (Trp-214). Trp-214 was reacted with o-nitrophenylsulfenyl chloride, followed by immobilization of the modified protein and normal HSA onto separate silica-based HPLC supports. The binding properties of the modified and normal HSA were then analyzed and compared by using frontal analysis and zonal elution experiments employing R/S-warfarin and l-tryptophan as probe compounds for the warfarin and indole binding regions of HSA. The modified HSA was found to have the same number of binding sites as normal HSA for R-warfarin and l-tryptophan but lower association equilibrium constants for these test solutes. Zonal elution studies with R- and S-warfarin on the modified HSA column demonstrated the importance of Trp-214 in determining the stereoselective binding of HSA for these agents. These studies also indicated that tryptophan modification can alter HSA-based separations for chiral solutes.  相似文献   

18.
This study describes the eco‐friendly, low‐cost and room‐temperature synthesis of gold nanoparticles from Musa balbisiana leaf extract, which acts as both reducing and stabilizing agent, and characterized by ultraviolet?visible (UV–vis) light spectroscopy, fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FE‐SEM), analytical transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDAX) and dynamic light scattering (DLS) instruments. These nanoparticles showed an average diameter of 33.83 ± 3.39 nm, which was confirmed from the size distribution histogram. The bactericidal activity of these nanoparticles was confirmed using bacteria Escherichia coli and Staphylococcus aureus at 1 and 2 nM minimum inhibitory concentrations, respectively. The interaction between nanoparticles and human serum albumin (HSA) was investigated, as this plays significant roles in biological systems. The nature of interaction, binding parameters and structural variation of HSA in the presence of these nanoparticles have been evaluated using several useful spectroscopic approaches such as UV–vis, FTIR, time‐resolved and steady‐state fluorescence, and circular dichroism in addition to the measurement of zeta potential. This interaction study revealed that static quenching occurs in this process with minimal alteration in the secondary structure, but the native structure of HSA remained unaltered. The binding constant and thermodynamic parameters of this interaction process were also evaluated.  相似文献   

19.
The fibrillation propensity of the multidomain protein human serum albumin (HSA) was analyzed under different solution conditions. The aggregation kinetics, protein conformational changes upon self-assembly, and structure of the different intermediates on the fibrillation pathway were determined by means of thioflavin T (ThT) fluorescence and Congo Red absorbance; far- and near-ultraviolet circular dichroism; tryptophan fluorescence; Fourier transform infrared spectroscopy; x-ray diffraction; and transmission electron, scanning electron, atomic force, and microscopies. HSA fibrillation extends over several days of incubation without the presence of a lag phase, except for HSA samples incubated at acidic pH and room temperature in the absence of electrolyte. The absence of a lag phase occurs if the initial aggregation is a downhill process that does not require a highly organized and unstable nucleus. The fibrillation process is accompanied by a progressive increase in the β-sheet (up to 26%) and unordered conformation at the expense of α-helical conformation, as revealed by ThT fluorescence and circular dichroism and Fourier transform infrared spectroscopies, but changes in the secondary structure contents depend on solution conditions. These changes also involve the presence of different structural intermediates in the aggregation pathway, such as oligomeric clusters (globules), bead-like structures, and ring-shaped aggregates. We suggest that fibril formation may take place through the role of association-competent oligomeric intermediates, resulting in a kinetic pathway via clustering of these oligomeric species to yield protofibrils and then fibrils. The resultant fibrils are elongated but curly, and differ in length depending on solution conditions. Under acidic conditions, circular fibrils are commonly observed if the fibrils are sufficiently flexible and long enough for the ends to find themselves regularly in close proximity to each other. These fibrils can be formed by an antiparallel arrangement of β-strands forming the β-sheet structure of the HSA fibrils as the most probable configuration. Very long incubation times lead to a more complex morphological variability of amyloid mature fibrils (i.e., long straight fibrils, flat-ribbon structures, laterally connected fibers, etc.). We also observed that mature straight fibrils can also grow by protein oligomers tending to align within the immediate vicinity of the fibers. This filament + monomers/oligomers scenario is an alternative pathway to the otherwise dominant filament + filament manner of the protein fibril's lateral growth. Conformational preferences for a certain pathway to become active may exist, and the influence of environmental conditions such as pH, temperature, and salt must be considered.  相似文献   

20.
The interaction between 4-(4-fluorobenzylideneamino)-5-propyl-4H-1,2,4-triazole-3-thiol (FBTZ) and human serum albumin (HSA) under simulative physiological conditions was investigated by fluorescence, UV–vis absorption and circular dichroism (CD) spectroscopy as well as molecular modeling method. Fluorescence spectroscopic data showed that the fluorescence quenching of HSA was a result of the formation of FBTZ–HSA complex. According to the modified Stern–Volmer equation, the effective quenching constants (K a) of FBTZ to HSA were obtained at three different temperatures. The enthalpy change (ΔH) and entropy change (ΔS) were calculated on the basis of van′t Hoff equation, and the results showed that hydrogen-bonding and van der Waals forces were the dominant intermolecular forces to stabilize the complex. Site marker competitive replacement experiments demonstrated that the binding of FBTZ to HSA primarily took place in sub-domain IIA (Sudlow’s site I). The binding distance (r) between FBTZ and the tryptophan residue of HSA was estimated according to the theory of fluorescence resonance energy transfer. The conformational investigation showed that the presence of FBTZ induced some changes of secondary structure of HSA. Molecular modeling study further confirmed the binding mode obtained by experimental study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号