首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 835 毫秒
1.
A theoretical study on the binding conformations and the quantitative structure–activity relationship (QSAR) of combretastatin A4 (CA-4) analogs as inhibitors toward tubulin has been carried out using docking analysis and comparative molecular field analysis (CoMFA). The appropriate binding orientations and conformations of these compounds interacting with tubulin were revealed by the docking study; and a 3D-QSAR model showing significant statistical quality and satisfactory predictive ability was established, in which the correlation coefficient (R2) and cross-validation coefficient (q2) were 0.955 and 0.66, respectively. The same model was further applied to predict the pIC50 values for 16 congeneric compounds as external test set, and the predictive correlation coefficient R2pred reached 0.883. Other tests on additional validations further confirmed the satisfactory predictive power of the model. In this work, it was very interesting to find that the 3D topology structure of the active site of tubulin from the docking analysis was in good agreement with the 3D-QSAR model from CoMFA for this series of compounds. Some key structural factors of the compounds responsible for cytotoxicity were reasonably presented. These theoretical results can offer useful references for understanding the action mechanism and directing the molecular design of this kind of inhibitor with improved activity.  相似文献   

2.
3.
Abstract

P21-activated kinase 4 (PAK4) is a serine/threonine protein kinase, which is associated with many cancer diseases, and thus being considered as a potential drug target. In this study, three-dimensional quantitative structure-activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations were performed to explore the structure-activity relationship of a series of pyrropyrazole PAK4 inhibitors. The statistical parameters of comparative molecular field analysis (CoMFA, Q 2 = 0.837, R 2 = 0.990, and R 2 pred = 0.967) and comparative molecular similarity indices analysis (CoMSIA, Q 2 = 0.720, R 2 = 0.972, and R 2 pred = 0.946) were obtained from 3D-QSAR model, which exhibited good predictive ability and significant statistical reliability. The binding mode of PAK4 with its inhibitors was obtained through molecular docking study, which indicated that the residues of GLU396, LEU398, LYS350, and ASP458 were important for activity. Molecular mechanics generalized born surface area (MM-GBSA) method was performed to calculate the binding free energy, which indicated that the coulomb, lipophilic and van der Waals (vdW) interactions made major contributions to the binding affinity. Furthermore, through 100?ns MD simulations, we obtained the key amino acid residues and the types of interactions they participated in. Based on the constructed 3D-QSAR model, some novel pyrropyrazole derivatives targeting PAK4 were designed with improved predicted activities. Pharmacokinetic and toxicity predictions of the designed PAK4 inhibitors were obtained by the pkCSM, indicating these compounds had better absorption, distribution, metabolism, excretion and toxicity (ADMET) properties. Above research provided a valuable insight for developing novel and effective pyrropyrazole compounds targeting PAK4.  相似文献   

4.
5.
In this work, 48 thrombin inhibitors based on the structural scaffold of dabigatran were analyzed using a combination of molecular modeling techniques. We generated three-dimensional quantitative structure–activity relationship (3D-QSAR) models based on three alignments for both comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) to highlight the structural requirements for thrombin protein inhibition. In addition to the 3D-QSAR study, Topomer CoMFA model also was established with a higher leave-one-out cross-validation q2 and a non-cross-validation r2, which suggest that the three models have good predictive ability. The results indicated that the steric, hydrophobic and electrostatic fields play key roles in QSAR model. Furthermore, we employed molecular docking and re-docking simulation explored the binding relationship of the ligand and the receptor protein in detail. Molecular docking simulations identified several key interactions that were also indicated through 3D-QSAR analysis. On the basis of the obtained results, two compounds were designed and predicted by three models, the biological evaluation in vitro (IC50) demonstrated that these molecular models were effective for the development of novel potent thrombin inhibitors.  相似文献   

6.
Abstract

Sirtuin 2 is a key enzyme in gene expression regulation that is often associated with tumor proliferation control and therefore is a relevant anticancer drug target. Anilinobenzamide derivatives have been discussed as selective sirtuin 2 inhibitors and can be developed further. In the present study, hologram and three-dimensional quantitative structure–activity relationship (HQSAR and 3D-QSAR) analyses were employed for determining structural contributions of a compound series containing human sirtuin-2-selective inhibitors that were then correlated with structural data from the literature. The final QSAR models were robust and predictive according to statistical validation (q2 and r2pred values higher than 0.85 and 0.75, respectively) and could be employed further to generate fragment contribution and contour maps. 3D-QSAR models together with information about the chemical properties of sirtuin 2 inhibitors can be useful for designing novel bioactive ligands.

Communicated by Ramaswamy H. Sarma  相似文献   

7.
As a tumor suppressor, p53 protein regulates the cell cycle and is involved in preventing tumorgenesis. The protein level of p53 is under the tight control of its negative regulator human double minute 2 (HDM2) via ubiquitination. Therefore, the design of inhibitors of HDM2 has attracted much interest of research on developing novel anticancer drugs. Presently, two classes of molecules, i.e., the 1,4-benzodiazepine-2,5-diones (BDPs) and N-Acylpolyamine (NAPA) derivatives were studied by three-dimensional quantitative structure–activity relationship (3D-QSAR) modeling approaches including the comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) as promising p53-HDM2 inhibitors. Based on both the ligand-based and receptor-guided (docking) alignments, two optimal 3D-QSAR models were obtained with good predictive power of q 2 = 0.41, r 2 pred = 0.60 for BDPs, and q 2 = 0.414, r 2 pred = 0.69 for NAPA analogs, respectively. By analysis of the model and its related contour maps, it is revealed that the electrostatic interactions contributed much larger to the compound binding affinity than the steric effects. And the contour maps intuitively suggested where to modify the molecular structures in order to improve the binding affinity. In addition, molecular dynamics simulation (MD) study was also carried out on the dataset with purpose of exploring the detailed binding modes of ligand in the HDM2 binding pocket. Based on the CoMFA contour maps and MD-based docking analyses, some key structural aspects responsible for inhibitory activity of these two classes of compounds were concluded as follows: For BDPs, the R1 and R3 regions should have small electronegativity groups; substituents R2 and R4 should be larger, and R3 substituent mainly involves in H-bonds forming. For NAPA derivatives, bulky and electropositive groups in ring B and ring A, small substituent at region P is favorable for the inhibitory activity. The models and related information, we hope, may provide important insight into the inhibitor-p53-HDM2 interactions and be helpful for facilitating the design of novel potent inhibitors.  相似文献   

8.
9.
The discovery of clinically relevant inhibitors of retinoic acid receptor-related orphan receptor-gamma-t (RORγt) for autoimmune diseases therapy has proven to be a challenging task. In the present work, to find out the structural features required for the inhibitory activity, we show for the first time a three-dimensional quantitative structure–activity relationship (3D-QSAR), molecular docking and molecular dynamics (MD) simulations for a series of novel thiazole/thiophene ketone amides with inhibitory activity at the RORγt receptor. The optimum CoMFA and CoMSIA models, derived from ligand-based superimposition I, exhibit leave-one-out cross-validated correlation coefficient (R2cv) of .859 and .805, respectively. Furthermore, the external predictive abilities of the models were evaluated by a test set, producing the predicted correlation coefficient (R2pred) of .7317 and .7097, respectively. In addition, molecular docking analysis was applied to explore the binding modes between the inhibitors and the receptor. MD simulation and MM/PBSA method were also employed to study the stability and rationality of the derived conformations, and the binding free energies in detail. The QSAR models and the results of molecular docking, MD simulation, binding free energies corroborate well with each other and further provide insights regarding the development of novel RORγt inhibitors with better activity.  相似文献   

10.
Pharmacophore mapping, molecular docking and quantitative structure–activity relationship (QSAR) studies were carried out for a structurally diverse set of 48 compounds as CYP2B6 inhibitors. The generated best pharmacophore hypotheses from the three methods of conformer generation (FAST, BEST and conformer algorithm based on energy screening and recursive buildup) indicate the importance of two features, namely, hydrogen bond acceptor [electron-rich centre] and ring aromaticity. The distance between the two centres of the important features for ideal inhibitors varied from 5.82 to 6.03 Å. The chemometric tools used for the QSAR analysis were genetic function approximation (GFA) and genetic partial least squares. The developed QSAR models indicate the importance of an electron-rich centre, size of molecule, impact of branching and ring system and distribution of charges in the molecular surface. The docking study confirms the importance of an electron-rich centre for binding with the iron atom of the cytochrome enzyme. A GFA model with spline option was found to be the best model based on internal validation as well as the r 2 m (overall) criterion (Q 2 = 0.772, r 2 m (overall) = 0.774). According to the external prediction statistics (R 2 pred = 0.876), another GFA-derived model with spline option outperforms the remaining models.  相似文献   

11.
Several small-molecule CDK inhibitors have been identified, but none have been approved for clinical use in the past few years. A new series of 4-[(3-hydroxybenzylamino)-methylene]-4H-isoquinoline-1,3-diones were reported as highly potent and selective CDK4 inhibitors. In order to find more potent CDK4 inhibitors, the interactions between these novel isoquinoline-1,3-diones and cyclin-dependent kinase 4 was explored via in silico methodologies such as 3D-QSAR and docking on eighty-one compounds displaying potent selective activities against cyclin-dependent kinase 4. Internal and external cross-validation techniques were investigated as well as region focusing, bootstraping and leave-group-out. A training set of 66 compounds gave the satisfactory CoMFA model (q 2 = 0.695, r 2 = 0.947) and CoMSIA model (q 2 = 0.641, r 2 = 0.933). The remaining 15 compounds as a test set also gave good external predictive abilities with r 2 pred values of 0.875 and 0.769 for CoMFA and CoMSIA, respectively. The 3D-QSAR models generated here predicted that all five parameters are important for activity toward CDK4. Surflex-dock results, coincident with CoMFA/CoMSIA contour maps, gave the path for binding mode exploration between the inhibitors and CDK4 protein. Based on the QSAR and docking models, twenty new potent molecules have been designed and predicted better than the most active compound 12 in the literatures. The QSAR, docking and interactions analysis expand the structure-activity relationships of constrained isoquinoline-1,3-diones and contribute towards the development of more active CDK4 subtype-selective inhibitors.  相似文献   

12.
We have performed quantitative structure–activity relationship (QSAR) and quantitative activity–activity relationship (QAAR) studies for aryltriazolylhydroxamates having antimalarial activity data against both chloroquine-sensitive (D6 clone) and chloroquine-resistant (W2 clone) strains of Plasmodium falciparum to understand the relationships between the biological activity and molecular properties for the design of new compounds. The QSAR studies were performed using 35 compounds among which 26 molecules were taken using k-means clustering technique in the training set for the derivation of the QSAR models and nine molecules were kept as the test-set compounds to evaluate the predictive ability of the derived models. The chemometric tool used for the analysis was the genetic function approximation. The developed models were analysed in terms of their predictive ability, and comparable results were obtained for cross-validated predictive variance (Q 2) and externally predicted variance (R 2 pred) values (0.761 and 0.829, respectively, for the D6 model, 0.708 and 0.748, respectively, for the W2 model and 0.984 and 0.982, respectively for the QAAR model). The QSAR models suggest that the number of methylene groups (between the triazolyl and hydroxamate moieties) and partially negatively charged surface areas of the molecules are important parameters for the antimalarial activity.  相似文献   

13.
14.
15.
16.
17.
Human Coagulation Factor IXa (FIXa), specifically inhibited at the initiation stage of the blood coagulation cascade, is an excellent target for developing selective and safe anticoagulants. To explore this inhibitory mechanism, 86 FIXa inhibitors were selected to generate pharmacophore models and subsequently SAR models. Both best pharmacophore model and ROC curve were built through the Receptor–Ligand Pharmacophore Generation module. CoMFA model based on molecular docking and PLS factor analysis methods were developed. Model propagations values are q2?=?0.709, r2?=?0.949, and r2pred?=?0.905. The satisfactory q2 value of 0.609, r2 value of 0.962, and r2pred value of 0.819 for CoMSIA indicated that the CoMFA and CoMSIA models are both available to predict the inhibitory activity on FIXa. On the basis of pharmacophore modeling, molecular docking, and 3D-QSAR modeling screening, six molecules are screened as potential FIXa inhibitors.  相似文献   

18.
Mycobacterium tuberculosis, the pathogen responsible for tuberculosis, uses various strategies to survive in a variety of host lesions. The re-emergence of multi-drug-resistant strains of M. tuberculosis underlines the necessity to discover new molecules. Inhibitors of aryl acid adenylating enzyme, MbtA, involved in siderophore biosynthesis in M. tuberculosis, are being explored as potential anti tubercular agents. In this study, we have used 3D-QSAR models and shape based virtual screening to identify novel MbtA inhibitors. 3D-QSAR studies were carried out on nucleoside bisubstrate derivatives. Both Comparative Molecular Field Analysis (r2?=?.944 and r2pred?=?.938) and Comparative Molecular Similarity Indices Analysis (r2?=?.892 and r2pred?=?.842) models, developed using Gasteiger charges with all fields, predicted efficiently. A total of 13 hits were identified as novel prospective inhibitors for MbtA by utilizing an insilico workflow. Out of 13 hits, five top ranked hits were used for further molecular dynamics studies to gain more insights about the stability of the complexes.  相似文献   

19.
Members of the epidermal growth factor receptor (EGFR) family of proteins are frequently overactive in solid tumors. A relatively new therapeutic approach to inhibit the kinase activity is the use of ATP-competitive small molecules. In silico techniques were employed to identify the key interactions between inhibitors and their protein receptors. A series of EGFR inhibitory anilinoquinolines was studied within the framework of hologram quantitative structure activity relationship (HQSAR), density functional theory (DFT)-based QSAR, and three-dimensional (3D) QSAR (CoMFA/CoMSIA). The HQSAR analysis implied that substitutions at certain sites on the inhibitors play an important role in EGFR inhibition. DFT-based QSAR results suggested that steric and electronic interactions contributed significantly to the activity. Ligand-based 3D-QSAR and receptor-guided 3D-QSAR analyses such as CoMFA and CoMSIA techniques were carried out, and the results corroborated the previous two approaches. The 3D QSAR models indicated that steric and hydrophobic interactions are dominant, and that substitution patterns are an important factor in determining activity. Molecular docking was helpful in identifying a bioactive conformer as well as a plausible binding mode. The docked geometry-based CoMFA model with steric and electrostatic fields effect gave q 2 = 0.66, r 2 = = 0.94 with r 2 predictive = 0.72. Similarly, CoMSIA with hydrophobic field gave q 2 = 0.59, r 2 = 0.85 with r 2 predictive = 0.63. Bulky groups around site 3 of ring “C”, and hydrophilic and bulky groups at position 6 of ring “A” are desirable, with a hydrophobic and electron-donating group at site 7 of ring “A” being helpful. Accordingly, potential EGFR inhibitors may be designed by modification of known inhibitors.  相似文献   

20.
Transforming growth factor type 1 receptor (ALK5) is kinase associated with a wide variety of pathological processes, and inhibition of ALK5 is a good strategy to treat many kinds of cancer and fibrotic diseases. Recently, a series of compounds have been synthesized as ALK5 inhibitors. However, the study of their selectivity against other potential targets remains elusive. In this research, a data-set of ALK5 inhibitors were collected and studied based on the combination of 2D-QSAR, molecular docking and molecular dynamics simulation. The quality of QSAR models were assessed statistically by F, R2, and R2ADJ, proved to be credible. The cross-validations for the models (q2LOO = 0.571 and 0.629, respectively) showed their robustness, while the external validations (r2test = 0.703 and 0.764, respectively) showed their predictive power. Besides, the predicted binding free energy results calculated by MM/GBSA method were in accordance with the experimental data, and the van der Waals energy term was the factor that had the most significant impact on ligand binding. What is more, several important residues were found to significantly affect the binding affinity. Finally, based on our analyses above, a proposed series of molecules were designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号