首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
血色素沉着是一种血浆铁沉积过多而导致的器官损伤性疾病,多种铁调节基因如HFE、HJV、HAMP和TfR2等的突变均可导致该病的发生,其中HAMP是最为重要的一种。HAMP基因编码一种名为海帕西啶的小肽,是小肠铁重吸收和巨噬细胞铁释放的负调节因子。海帕西啶含量的减少将导致血清铁过负荷和血色素沉着的发生,HFE、HJV和TfR2等基因可影响海帕西啶的表达,从而使海帕西啶成为血色素沉着的中央调节者。这些研究对血色素沉着发生机制的理解及其诊断和治疗具有重要意义。  相似文献   

2.
Mutations in the HFE gene result in hereditary hemochromatosis, a disorder of iron metabolism characterized by increased intestinal iron absorption. Based on the observation that ectopic expression of HFE strongly inhibits apical iron uptake (Arredondo et al., 2001, FASEB J 15, 1276–1278), a negative regulation of HFE on the apical membrane transporter DMT1 was proposed as a mechanism by which HFE regulates iron absorption. To test this hypothesis, we investigated: (i) the effect of HFE antisense oligonucleotides on apical iron uptake by polarized Caco-2 cells; (ii) the apical/basolateral membrane distribution of HFE, β-2 microglobulin and DMT1; (iii) the putative molecular association between HFE and DMT1. We found that HFE antisense treatment reduced HFE expression and increased apical iron uptake, whereas transfection with wild-type HFE inhibited iron uptake. Thus, an inverse relationship was established between HFE levels and apical iron uptake activity. Selective apical or basolateral biotinylation indicated preferential localization of DMT1 to the apical membrane and of HFE and β-2 microglobulin (β2m) to the basolateral membrane. Ectopic expression of HFE resulted in increased distribution of HFE–β2m to the apical membrane. The amount of HFE–β2m in the apical membrane inversely correlated with apical iron uptake rates. Immunoprecipitations of HFE or β2m with specific antibodies resulted in the co-precipitation of DMT1. These results sustain a model by which direct interaction between DMT1 and HFE–β2m in the apical membrane of Caco-2 cells result in down-regulation of apical iron uptake activity.  相似文献   

3.
E.D. Weinberg 《Biometals》2002,15(4):347-350
Some heterozygote carriers of hemochromatosis HFE gene mutations become iron loaded with ensuing increased risk of disease and premature death. Contributing nutritional, behavioral and genetic factors are beginning to be identified. Carriers of HFE gene mutations should be advised to minimize contributing factors, if possible, and to have their iron values tested periodically. If values begin to rise, a schedule of phlebotomies should be considered.  相似文献   

4.
People suffering from hereditary hemochromatosis (HH) can not regulate the uptake of iron properly and gradually accumulate iron in their body over their lifetime. The protein involved in HH, HFE, has been recently identified as a class I major histocompatibility complex (MHC) homolog. The wild-type HFE associates and co-traffics with the transferrin receptor (TfR). The mutation responsible for 83% of HH (C260Y) results in the failure of HFE to form a critical disulfide bond, bind β2 microglobulin, bind TfR, and traffic to the cell surface. In non-polarized cells, the partnership of HFE and TfR results in decreased iron uptake into cells. The mechanism whereby a class I MHC homolog modifies the function of a membrane receptor and how this dynamic complex of molecules regulates iron transport across intestinal epithelial cells is the subject of this review.  相似文献   

5.
Iron uptake and storage are tightly regulated to guarantee sufficient iron for essential cellular processes and to prevent the production of damaging free radicals. A non-classical class I MHC molecule, the hemochromatosis factor HFE, has been shown to regulate iron metabolism, potentially via its direct interaction with the transferrin receptor (TfR). In this study, we demonstrate that a soluble beta2microglobulin-HFE monochain (sHFE) folds with beta2microglobulin (beta2m) and associates with the TfR, indicating that the transmembrane and cytoplasmic domains are not necessary for assembly and trafficking through the ER-Golgi network. We also demonstrate human TfR-specific uptake and accumulation of extracellular sHFE by treated cells. The sHFE localized to the endosomal compartment albeit we observed variation in the time taken for endosomal trafficking between different cell types. The sHFE monochain was effective in reducing Tf uptake into cells, however this did not correlate to any changes in TfR or ferritin synthesis, in contrast to the HFE-induced increase and decrease of TfR and ferritin, respectively. These findings of incongruent sHFE activity suggest that either variation in affinity binding of sHFE to TfR prevents efficient modulation of iron-regulated proteins or that HFE has multiple functions some of which may be independent of TfR but dependent on interactions within the endosomal compartment for effective modulation of iron metabolism.  相似文献   

6.
Hemochromatosis factor E (HFE) is a member of class I MHC family and plays a significant role in the iron homeostasis. Denaturation of HFE induced by guanidinium chloride (GdmCl) was measured by monitoring changes in [θ]222 (mean residue ellipticity at 222 nm), intrinsic fluorescence emission intensity at 346 nm (F346) and the difference absorption coefficient at 287 nm (Δε287) at pH 8.0 and 25°C. Coincidence of denaturation curves of these optical properties suggests that GdmCl‐induced denaturation (native (N) state ? denatured (D) state) is a two‐state process. The GdmCl‐induced denaturation was found reversible in the entire concentration range of the denaturant. All denaturation curves were analyzed for , Gibbs free energy change associated with the denaturation equilibrium (N state ? D state) in the absence of GdmCl, which is a measure of HFE stability. We further performed molecular dynamics simulation for 40 ns to see the effect of GdmCl on the structural stability of HFE. A well defined correlation was established between in vitro and in silico studies. © 2015 Wiley Periodicals, Inc. Biopolymers 105: 133–142, 2016.  相似文献   

7.
Hereditary hemochromatosis causes iron overload and is associated with a variety of genetic and phenotypic conditions. Early diagnosis is important so that effective treatment can be administered and the risk of tissue damage avoided. Most patients are homozygous for the c.845G>A (p.C282Y) mutation in the HFE gene; however, rare forms of genetic iron overload must be diagnosed using a specific genetic analysis. We studied the genotype of 5 patients who had hyperferritinemia and an iron overload phenotype, but not classic mutations in the HFE gene. Two patients were undergoing phlebotomy and had no iron overload, 1 with metabolic syndrome and no phlebotomy had mild iron overload, and 2 patients had severe iron overload despite phlebotomy. The patients' first-degree relatives also underwent the analysis. We found 5 not previously published mutations: c.-408_-406delCAA in HFE, c.1118G>A (p.G373D), c.1473G>A (p.E491E) and c.2085G>C (p.S695S) in TFR2; and c.-428_-427GG>TT in SLC40A1. Moreover, we found 3 previously published mutations: c.221C>T (p.R71X) in HFE; c.1127C>A (p.A376D) in TFR2; and c.539T>C (p.I180T) in SLC40A1. Four patients were double heterozygous or compound heterozygous for the mutations mentioned above, and the patient with metabolic syndrome was heterozygous for a mutation in the TFR2 gene. Our findings show that hereditary hemochromatosis is clinically and genetically heterogeneous and that acquired factors may modify or determine the phenotype.  相似文献   

8.
HFE is a nonclassical class I major histocompatibility complex (MHC) molecule that is mutated in the autosomal recessive iron overload disease hereditary hemochromatosis. There is evidence linking HFE with reduced iron uptake by the transferrin receptor (TfR). Using a panel of HFE and TfR monoclonal antibodies to examine human HFE (hHFE)-expressing cell lines, we demonstrate the expression of stable and fully glycosylated TfR-free and TfR-associated hHFE/beta2m complexes. We show that both the stability and assembly of hHFE complexes can be modified by the human cytomegalovirus (HCMV) viral protein US2, known to interfere with the expression of classical class I MHC molecules. HCMV US2, but not US11, targets HFE molecules for degradation by the proteasome. Whether this interference with the regulation of iron metabolism by a viral protein is a means of potentiating viral replication remains to be determined. The reduced expression of classical class I MHC and HFE complexes provides the virus with an efficient tool for altering cellular metabolism and escaping certain immune responses.  相似文献   

9.
Hereditary hemochromatosis type I is an autosomal-recessive iron overload disease associated with a mutation in HFE gene. The most common mutation, C282Y, disrupts the disulfide bond necessary for the association of HFE with beta-2-microglobulin and abrogates cell surface HFE expression. HFE-deficient mice develop iron overload indicating a central role of the protein in the pathogenesis of hereditary hemochromatosis type I. However, despite significant effort, the role of the HFE protein in iron metabolism is still unknown. To shed a light on the molecular mechanism of HFE-related hemochromatosis we studied protein expression changes elicited by HFE-deficiency in the liver which is the organ critical for the regulation of iron metabolism. We undertook a proteomic study comparing protein expression in the liver of HFE deficient mice with control animals. We compared HFE-deficient animals with control animals with identical iron levels obtained by dietary treatment to identify changes specific to HFE deficiency rather than iron loading. We found 11 proteins that were differentially expressed in the HFE-deficient liver using two-dimensional electrophoresis and mass spectrometry identification. Of particular interest were urinary proteins 1, 2 and 6, glutathione-S-transferase P1, selenium binding protein 2, sarcosine dehydrogenase and thioredoxin-like protein 2. Our data suggest possible involvement of lipocalins, TNF-alpha signaling and PPAR alpha regulatory pathway in the pathogenesis of hereditary hemochromatosis and suggest future targeted research addressing the roles of the identified candidate genes in the molecular mechanism of hereditary hemochromatosis.  相似文献   

10.
HFE and transferrin receptor 2 (TFR2) are membrane proteins integral to mammalian iron homeostasis and associated with human hereditary hemochromatosis. Here we demonstrate that HFE and TFR2 interact in cells, that this interaction is not abrogated by disease-associated mutations of HFE and TFR2, and that TFR2 competes with TFR1 for binding to HFE. We propose a new model for the mechanism of iron status sensing that results in the regulation of iron homeostasis.  相似文献   

11.
Mechanism for multiple ligand recognition by the human transferrin receptor   总被引:3,自引:1,他引:2  
Transferrin receptor 1 (TfR) plays a critical role in cellular iron import for most higher organisms. Cell surface TfR binds to circulating iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes, where low pH promotes iron to dissociate from transferrin (Tf) in a TfR-assisted process. The iron-free form of Tf (apo-Tf) remains bound to TfR and is recycled to the cell surface, where the complex dissociates upon exposure to the slightly basic pH of the blood. Fe-Tf competes for binding to TfR with HFE, the protein mutated in the iron-overload disease hereditary hemochromatosis. We used a quantitative surface plasmon resonance assay to determine the binding affinities of an extensive set of site-directed TfR mutants to HFE and Fe-Tf at pH 7.4 and to apo-Tf at pH 6.3. These results confirm the previous finding that Fe-Tf and HFE compete for the receptor by binding to an overlapping site on the TfR helical domain. Spatially distant mutations in the TfR protease-like domain affect binding of Fe-Tf, but not iron-loaded Tf C-lobe, apo-Tf, or HFE, and mutations at the edge of the TfR helical domain affect binding of apo-Tf, but not Fe-Tf or HFE. The binding data presented here reveal the binding footprints on TfR for Fe-Tf and apo-Tf. These data support a model in which the Tf C-lobe contacts the TfR helical domain and the Tf N-lobe contacts the base of the TfR protease-like domain. The differential effects of some TfR mutations on binding to Fe-Tf and apo-Tf suggest differences in the contact points between TfR and the two forms of Tf that could be caused by pH-dependent conformational changes in Tf, TfR, or both. From these data, we propose a structure-based model for the mechanism of TfR-assisted iron release from Fe-Tf.  相似文献   

12.
Since the discovery of the hemochromatosis gene (HFE) in 1996, there has been increasing interest in diagnostic testing for the C282Y and H63D mutations. The high frequency of these two alleles and their incomplete penetrance in homozygotes and compound heterozygotes make genetic counseling for hemochromatosis different from some other autosomal recessive conditions in that parents and children may also be at risk for iron overload, while homozygotes may remain asymptomatic. We provide a guideline for genetic counseling in HFE-linked hemochromatosis based on the genetic probability of inheriting HFE mutations and known information about expression of iron overload in various HFE genotypes. Genetic probabilities were based on allele frequencies derived from large population studies and Hardy-Weinberg equilibrium estimates. Expression of iron overload in those of various genotypes was based on available estimates of serum ferritin from population screening studies. Estimates for the likelihood of clinical iron overload requiring follow-up screening or treatment are provided by gender and genotype. The probability of inheriting HFE mutations and developing iron overload can be estimated in family members of a proband with HFE mutations. Many C282Y homozygotes will not have clinical iron overload. The risk is highest in men and their C282Y homozygous brothers and significantly lower in homozygous women. Iron overload is uncommon in compound heterozygotes and H63D homozygotes.  相似文献   

13.
The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.  相似文献   

14.
15.
16.
Although the recent identification of several genes has extended our knowledge on the maintenance of body iron homeostasis, their tissue specific expression patterns and the underlying regulatory networks are poorly understood. We studied C57black/Sv129 mice and HFE knockout (HFE -/-) variants thereof as a model for hemochromatosis, and investigated the expression of iron metabolism genes in the duodenum, liver, and kidney as a function of dietary iron challenge. In HFE +/+ mice dietary iron supplementation increased hepatic expression of hepcidin which was paralleled by decreased iron regulatory protein (IRP) activity, and reduced expression of divalent metal transporter-1 (DMT-1) and duodenal cytochrome b (Dcytb) in the enterocyte. In HFE -/- mice hepcidin formation was diminished upon iron challenge which was associated with decreased hepatic transferrin receptor (TfR)-2 levels. Accordingly, HFE -/- mice presented with high duodenal Dcytb and DMT-1 levels, and increased IRP and TfR expression, suggesting iron deficiency in the enterocyte and increased iron absorption. In parallel, HFE -/- resulted in reduced renal expression of Dcytb and DMT-1. Our data suggest that the feed back regulation of duodenal iron absorption by hepcidin is impaired in HFE -/- mice, a model for genetic hemochromatosis. This change may be linked to inappropriate iron sensing by the liver based on decreased TfR-2 expression, resulting in reduced circulating hepcidin levels and an inappropriate up-regulation of Dcytb and DMT-1 driven iron absorption. In addition, iron excretion/reabsorption by the kidneys may be altered, which may aggravate progressive iron overload.  相似文献   

17.
HFE is a class I major histocompatibility complex (MHC)-related protein that is mutated in patients with the iron overload disease hereditary hemochromatosis. HFE binds to transferrin receptor (TfR), the receptor used by cells to obtain iron in the form of diferric transferrin (Fe-Tf). Previous studies demonstrated that HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, and that membrane-bound or soluble HFE binding to cell surface TfR results in a reduction in the affinity of TfR for Fe-Tf. We studied the inhibition by soluble HFE of the interaction between soluble TfR and Fe-Tf using radioactivity-based and biosensor-based assays. The results demonstrate that HFE inhibits the TfR:Fe-Tf interaction by binding at or near the Fe-Tf binding site on TfR, and that the Fe-Tf:TfR:HFE ternary complex consists of one Fe-Tf and one HFE bound to a TfR homodimer.  相似文献   

18.
The mystery surrounding the apparent lack of iron within the macrophages of individuals with hereditary hemochromatosis, a condition of excessive uptake of dietary iron, has yet to be fully explained. We have suggested that iron deficiency of macrophages in people with hereditary hemochromatosis mutations is associated with increased resistance to infection by Yersinia and other intracellular pathogens, a selection pressure resulting in unusually high current population frequencies of hereditary hemochromatosis mutations. Such selection pressure has been called Epidemic Pathogenic Selection (EPS). In support of the theory of EPS, a considerable number of virulent species of bacteria multiply mainly in iron-rich macrophages of their mammalian hosts. Among these fastidious pathogens are strains of Chlamydia, Coxiella, Francisella, Legionella, Mycobacterium, Salmonella and Yersinia. Iron deficiency of macrophages of persons with hereditary hemochromatosis gene mutations may result in increased resistance to members of these bacterial pathogens. People with genes that result in hereditary hemochromatosis may be protected against coronary artery disease associated with Chlamydia and Coxiella infection in the absence of iron overload. In the clinical setting, when a patient appears to be iron deficient, the reason for this should be carefully evaluated. Iron supplementation may adversely affect the health of individuals who have mounted an acute phase response to infection, injury or stress, or who carry genes predisposing them to iron overload disorders.  相似文献   

19.
Lack of functional hereditary hemochromatosis protein, HFE, causes iron overload predominantly in hepatocytes, the major site of HFE expression in the liver. In this study, we investigated the role of HFE in the regulation of both transferrin-bound iron (TBI) and non-transferrin-bound iron (NTBI) uptake in HepG2 cells, a human hepatoma cell line. Expression of HFE decreased both TBI and NTBI uptake. It also resulted in a decrease in the protein levels of Zip14 with no evident change in the mRNA level of Zip14. Zip14 (Slc39a14) is a metal transporter that mediates NTBI into cells (Liuzzi, J. P., Aydemir, F., Nam, H., Knutson, M. D., and Cousins, R. J. (2006) Proc. Natl. Acad. Sci. U. S. A. 103, 13612-13617). Knockdown of Zip14 with siRNA abolished the effect of HFE on NTBI uptake. To determine if HFE had a similar effect on Zip14 in another cell line, HeLa cells expressing HFE under the tetracycline-repressible promoter were transfected with Zip14. As in HepG2 cells, HFE expression inhibited NTBI uptake by approximately 50% and decreased Zip14 protein levels. Further analysis of protein turnover indicated that the half-life of Zip14 is lower in cells that express HFE. These results suggest that HFE decreases the stability of Zip14 and therefore reduces the iron loading in HepG2 cells.  相似文献   

20.
The HFE mutation is common and, when homozygous, can lead to a morbid accumulation of body iron and the disease hereditary hemochromatosis. Heterozygotes compose 10-15% of the European-American population, and have evidence of elevated body iron compared to homozygous normal people. Dietary iron content was hypothesized to interact with the HFE genotype to influence oxidative damage in mammary and colon tissue. Two groups of HFE-knockout mice were fed a standard iron diet (300 ppm) or a low iron diet (30 ppm). There was a significantly elevated concentration of malondialdehyde (by HPLC) in mammary (305 pmol/g vs. 166, p =.04) and colon (349 pmol/g vs. 226, p =.02) tissue among those mice on the standard iron diet compared to those on the low iron diet. These results suggest that dietary modification may affect the course of iron overload from HFE mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号