首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 624 毫秒
1.
Deregulation of the phosphoinositide 3-kinase-Akt pathway is a major contributor to oncogenesis and resistance to cancer therapy. Recent work has shown mammalian target of rapamycin (mTOR) to be a major target downstream of Akt that contributes to both transformation and therapeutic resistance. Although inhibitors of Akt are not yet clinically available, rapamycin, a mTOR-specific inhibitor, has long been used as an immunosuppressant, and several rapamycin analogues are now in clinical trials in oncology. Recent data indicate that a mTOR complex phosphorylates Akt, and this complex is insensitive to rapamycin. We show that dominant-negative mTOR diminishes phosphorylation of endogenous Akt and exogenous myristoylated Akt (mAkt), that prolonged exposure to rapamycin also inhibits Akt activation, and that this inhibition is dependent on new protein synthesis. These data suggest that mTOR facilitates Akt activation through mechanisms other than direct phosphorylation. A constitutively active mTOR mutant that fails to enhance Akt phosphorylation nevertheless promotes resistance to multiple antimicrotubule agents, indicating that mTOR also mediates survival independent of Akt. Although Akt- and mTOR-mediated survival has been linked to regulation of cellular metabolism, we also show that survival and metabolic control are separable. The hexokinase inhibitor 5-thioglucose markedly inhibits glycolytic rate but does not diminish vincristine resistance mediated by mAkt or mTOR, and it has only a minor effect on mTOR- or mAkt-mediated resistance to growth factor withdrawal, suggesting that Akt-mTOR-mediated resistance is largely independent of maintenance of glycolytic rate. We conclude that mTOR activity can promote resistance through multiple mechanisms independent of maintained glycolytic rate.  相似文献   

2.
The mammalian target of rapamycin (mTOR) which is part of two functionally distinct complexes, mTORC1 and mTORC2, plays an important role in vascular endothelial cells. Indeed, the inhibition of mTOR with an allosteric inhibitor such as rapamycin reduces the growth of endothelial cell in vitro and inhibits angiogenesis in vivo. Recent studies have shown that blocking mTOR results in the activation of other prosurvival signals such as Akt or MAPK which counteract the growth inhibitory properties of mTOR inhibitors. However, little is known about the interactions between mTOR and MAPK in endothelial cells and their relevance to angiogenesis. Here we found that blocking mTOR with ATP-competitive inhibitors of mTOR or with rapamycin induced the activation of the mitogen-activated protein kinase (MAPK) in endothelial cells. Downregulation of mTORC1 but not mTORC2 had similar effects showing that the inhibition of mTORC1 is responsible for the activation of MAPK. Treatment of endothelial cells with mTOR inhibitors in combination with MAPK inhibitors reduced endothelial cell survival, proliferation, migration and tube formation more significantly than either inhibition alone. Similarly, in a tumor xenograft model, the anti-angiogenic efficacy of mTOR inhibitors was enhanced by the pharmacological blockade of MAPK. Taken together these results show that blocking mTORC1 in endothelial cells activates MAPK and that a combined inhibition of MAPK and mTOR has additive anti-angiogenic effects. They also provide a rationale to target both mTOR and MAPK simultaneously in anti-angiogenic treatment.  相似文献   

3.
Purvalanol and roscovitine are cyclin dependent kinase (CDK) inhibitors that induce cell cycle arrest and apoptosis in various cancer cells. We further hypothesized that co-treatment of CDK inhibitors with rapamycin, an mTOR inhibitor, would be an effective combinatory strategy for the inhibition of prostate cancer regard to androgen receptor (AR) status due to inhibition of proliferative pathway, PI3K/AKT/mTOR, and induction of cell death mechanisms. Androgen responsive (AR+), PTEN?/? LNCaP and androgen independent (AR?), PTEN+/? DU145 prostate cancer cells were exposed to purvalanol (20 µM) and roscovitine (30 µM) with or without rapamycin for 24 h. Cell viability assay, immunoblotting, flow cytometry and fluorescence microscopy was used to define the effect of CDK inhibitors with or without rapamycin on proliferative pathway and cell death mechanisms in LNCaP and DU145 prostate cancer cells. Co-treatment of rapamycin modulated CDK inhibitors-induced cytotoxicity and apoptosis that CDK inhibitors were more potent to induce cell death in AR (+) LNCaP cells than AR (?) DU145 cells. CDK inhibitors in the presence or absence of rapamycin induced cell death via modulating upstream PI3K/AKT/mTOR signaling pathway in LNCaP cells, exclusively only treatment of purvalanol have strong potential to inhibit both upstream and downstream targets of mTOR in LNCaP and DU145 cells. However, co-treatment of rapamycin with CDK inhibitors protects DU145 cells from apoptosis via induction of autophagy mechanism. We confirmed that purvalanol and roscovitine were strong apoptotic and autophagy inducers that based on regulation of PI3K/AKT/mTOR signaling pathway. Co-treatment of rapamycin with purvalanol and roscovitine exerted different effects on cell survival and death mechanisms in LNCaP and DU145 cell due to their AR receptor status. Our studies show that co-treatment of rapamycin with CDK inhibitors inhibit prostate cancer cell viability more effectively than either agent alone, in part, by targeting the mTOR signaling cascade in AR (+) LNCaP cells. In this point, mTOR is a fine-tuning player in purvalanol and roscovitine-induced apoptosis and autophagy via regulation of PI3K/AKT and the downstream targets, which related with cell proliferation.  相似文献   

4.
The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is related to cellular activities. Abnormalities of this signaling pathway were discovered in various cancers, including hepatocellular carcinoma (HCC). The PI3K/mTOR dual inhibitors were proposed to have enhanced antitumor efficacies by targeting multiple points of the signaling pathway. We synthesized a series of propynyl-substituted benzenesulfonamide derivatives as PI3K/mTOR dual inhibitors. Compound 7k (NSC781406) was identified as a highly potent dual inhibitor, which exhibited potent tumor growth inhibition in the hepatocellular carcinoma BEL-7404 xenograft model. Compound 7k may be a potential therapeutic drug candidate for HCC.  相似文献   

5.
The mTOR pathway plays an important role in a number of common renal diseases, including acute kidney injury (AKI), diabetic nephropathy (DN), and polycystic kidney diseases (PKD). The activity of mTOR complex 1 (mTORC1) is necessary for renal regeneration and repair after AKI, and inhibition of mTORC1 by rapamycin has been shown to delay recovery from ischemic AKI in animal studies, and to prolong delayed graft function in humans who have received a kidney transplant. For this reason, administration of rapamycin should be delayed or discontinued in patients with AKI until full recovery of renal function has occurred. On the other hand, inappropriately high mTORC1 activity contributes to the progression of the metabolic syndrome, the development of type 2 diabetes, and the pathogenesis of DN. In addition, chronic hyperactivity of mTORC1, and possibly also mTORC2, contributes to cyst formation and enlargement in a number of forms of PKD. Inhibition of mTOR, using either rapamycin (which inhibits predominantly mTORC1) or "catalytic" inhibitors (which effectively inhibit both mTORC1 and mTORC2), provide exciting possibilities for novel forms of treatment of DN and PKD. In this second part of the review, we will examine the role of mTOR in the pathophysiology of DN and PKD, as well as the potential utility of currently available and newly developed inhibitors of mTOR to slow the progression of DN and/or PKD.  相似文献   

6.
The mTOR pathway is aberrantly stimulated in many cancer cells, including pancreatic ductal adenocarcinoma (PDAC), and thus it is a potential target for therapy. However, the mTORC1/S6K axis also mediates negative feedback loops that attenuate signaling via insulin/IGF receptor and other tyrosine kinase receptors. Suppression of these feed-back loops unleashes over-activation of upstream pathways that potentially counterbalance the antiproliferative effects of mTOR inhibitors. Here, we demonstrate that treatment of PANC-1 or MiaPaCa-2 pancreatic cancer cells with either rapamycin or active-site mTOR inhibitors suppressed S6K and S6 phosphorylation induced by insulin and the GPCR agonist neurotensin. Rapamycin caused a striking increase in Akt phosphorylation at Ser473 while the active-site inhibitors of mTOR (KU63794 and PP242) completely abrogated Akt phosphorylation at this site. Conversely, active-site inhibitors of mTOR cause a marked increase in ERK activation whereas rapamycin did not have any stimulatory effect on ERK activation. The results imply that first and second generation of mTOR inhibitors promote over-activation of different pro-oncogenic pathways in PDAC cells, suggesting that suppression of feed-back loops should be a major consideration in the use of these inhibitors for PDAC therapy. In contrast, metformin abolished mTORC1 activation without over-stimulating Akt phosphorylation on Ser473 and prevented mitogen-stimulated ERK activation in PDAC cells. Metformin induced a more pronounced inhibition of proliferation than either KU63794 or rapamycin while, the active-site mTOR inhibitor was more effective than rapamycin. Thus, the effects of metformin on Akt and ERK activation are strikingly different from allosteric or active-site mTOR inhibitors in PDAC cells, though all these agents potently inhibited the mTORC1/S6K axis.  相似文献   

7.
Tuberous sclerosis complex (TSC) is an autosomal dominant tumor syndrome which afflicts multiple organs and for which there is no cure, such that TSC patients may develop severe mental retardation and succumb to renal or respiratory failure. TSC derives from inacti- vating mutations of either the TSC1 or TSC2 tumor suppressor gene, and the resulting inactivation of the TSC1/TSC2 protein complex causes hyperactivation of the mammalian target of rapamyein (mTOR), leading to uncontrolled cell growth and proliferation. Recent clinical trials of targeted suppression of mTOR have yielded only modest success in TSC patients. It was proposed that abrogation of a newly identified mTOR-mediated negative feedback regulation on extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway and on the well-documented RTK-PI3K-AKT signaling cascade could limit the efficacy of mTOR inhibitors in the treatment of TSC patients. Therefore, we speculate that dual inhibition of mTOR and ERK/MAPK pathways may overcome the disadvantage of single agent therapies and boost the efficacy of mTOR targeted therapies for TSC patients. Investigation of this hypothesis in a TSC cell model revealed that mTOR suppression with an mTOR inhibitor, rapamycin (sirolimus), led to up-regulation of ERK/MAPK signaling in mouse Tsc2 knockout cells and that this augmented signaling was attenuated by concurrent administration of a MEK1/2 inhibitor, PD98059. When compared with monotherapy, combinatorial application of rapamycin and PD98059 had greater inhibitory effects on Tsc2 deficient cell proliferation, suggesting that combined suppression of mTOR and ERK/MAPK signaling pathways may have advantages over single mTOR inhibition in the treatment of TSC patients.  相似文献   

8.
《Autophagy》2013,9(5):536-538
Signaling through phosphatidylinositol 3-kinase (PtdIns3K)-Akt-mTOR is frequently activated in cancers including glioblastoma multiforme (GBM), where this kinase network regulates survival. It is thus surprising that inhibitors of these pathways induce minimal cell death in glioma. We showed that the dual PtdIns3K-mTOR inhibitor PI-103 induces autophagy in therapy-resistant, PTEN-mutant glioma, with blockade of mTOR complex 1 (mTORC1) and complex 2 (mTORC2) contributing independently to autophagy. Inhibition of autophagosome maturation synergizes with PI-103 to induce apoptosis through the Bax-dependent intrinsic mitochondrial pathway, indicating that PI-103 induces autophagy as a survival pathway in this setting. Not all inhibitors of PtdIns3K-Akt-mTOR signaling synergize with inhibitors of autophagy. The allosteric mTORC1 inhibitor rapamycin fails to induce apoptosis in conjunction with blockade of autophagy, due to feedback-activation of Akt. Apoptosis in the setting of rapamycin therapy requires concurrent inhibition of both autophagy and of PtdIns3K-Akt. Moreover, the clinical PtdIns3K-mTOR inhibitor NVP-BEZ235 cooperates with the clinical lysosomotropic autophagy inhibitor chloroquine to induce apoptosis in PTEN-mutant glioma xenografts in vivo, offering a therapeutic approach translatable to patients.  相似文献   

9.
Advanced salivary gland mucoepidermoid carcinoma (MEC) is a relentless cancer that exhibits resistance to conventional chemotherapy. As such, treatment for patients with advanced MEC is tipically radical surgery and radiotherapy. Facial disfigurement and poor quality of life are frequent treatment challenges, and many patients succumb to loco-regional recurrence and/or metastasis. We know that cancer stem-like cells (CSC) drive MEC tumorigenesis. The current study tests the hypothesis that MEC CSC are sensitive to therapeutic inhibition of mTOR. Here, we report a correlation between the long-term clinical outcomes of 17 MEC patients and the intratumoral expression of p-mTOR (p = 0.00294) and p-S6K1 (p = 0.00357). In vitro, we observed that MEC CSC exhibit constitutive activation of the mTOR signaling pathway (i.e., mTOR, AKT, and S6K1), unveiling a potential strategy for targeted ablation of these cells. Using a panel of inhibitors of the mTOR pathway, i.e., rapamycin and temsirolimus (mTOR inhibitors), buparlisib and LY294002 (AKT inhibitors), and PF4708671 (S6K1 inhibitor), we observed consistently dose-dependent decrease in the fraction of CSC, as well as inhibition of secondary sphere formation and self-renewal in three human MEC cell lines (UM-HMC-1,-3A,-3B). Notably, therapeutic inhibition of mTOR with rapamycin or temsirolimus induced preferential apoptosis of CSC, when compared to bulk tumor cells. In contrast, conventional chemotherapeutic drugs (cisplatin, paclitaxel) induced preferential apoptosis of bulk tumor cells and accumulation of CSC. In vivo, therapeutic inhibition of mTOR with temsirolimus caused ablation of CSC and downregulation of Bmi-1 expression (major inducer of stem cell self-renewal) in MEC xenografts. Transplantation of MEC cells genetically silenced for mTOR into immunodeficient mice corroborated the results obtained with temsirolimus. Collectively, these data demonstrated that mTOR signaling is required for CSC survival, and unveiled the therapeutic potential of targeting the mTOR pathway for elimination of highly tumorigenic cancer stem-like cells in salivary gland mucoepidermoid carcinoma.Subject terms: Cancer stem cells, Cancer stem cells, Head and neck cancer, Oral cancer  相似文献   

10.
Mammalian target of rapamycin (mTOR) is a key regulator of cell growth, proliferation and angiogenesis. mTOR signaling is frequently hyper activated in a broad spectrum of human cancers thereby making it a potential drug target. The current drugs available have been successful in inhibiting the mTOR signaling, nevertheless, show low oral bioavailability and suboptimal solubility. Considering the narrow therapeutic window of the available inhibitors, through computational approaches, the present study pursues to identify a compound with optimal oral bioavailability and better solubility properties in addition ensuing high affinity between FKBP12 and FRB domain of mTOR. Current mTOR inhibitors; Everolimus, Temsirolimus Deforolimus and Echinomycin served as parent molecules for similarity search with a threshold of 95%. The query molecules and respective similar molecules were docked at the binding cleft of FKBP12 protein. Aided by MolDock algorithm, high affinity compounds against FKBP12 were retrieved. Patch Dock supervised protein-protein interactions were established between FRB domain of mTOR and ligand (query and similar) bound and free states of FKBP12. All the similar compounds thus retrieved showed better solubility properties and enabled better complex formation of mTOR and FKBP12. In particular Everolimus similar compound PubChem ID: 57284959 showed appreciable drugs like properties bestowed with better solubility higher oral bioavailability. In addition this compound brought about enhanced interaction between FKBP12 and FRB domain of mTOR. In the study, we report Everolimus similar compound PubChem ID: 57284959 to be potential inhibitor for mTOR pathway which can overcome the affinity and solubility concerns of current mTOR drugs.

Abbreviations

mTOR - Mammalian Target of Rapamycin, FRB domain - FKBP12-rapamycin associated protein, FKBP12 - FK506-binding protein 12, OPLS - Optimized Potentials for Liquid Simulations, Akt - RAC-alpha serine/threonine-protein kinase, PI3K - phosphatidylinositide 3-kinases.  相似文献   

11.
The mechanistic target of rapamycin (mTOR) pathway is a signaling system integral to neural growth and migration. In both patients and rodent models, mutations to the phosphatase and tensin homolog gene (PTEN) on chromosome 10 results in hyperactivation of the mTOR pathway, as well as seizures, intellectual disabilities and autistic behaviors. Rapamycin, an inhibitor of mTOR, can reverse the epileptic phenotype of neural subset specific Pten knockout (NS-Pten KO) mice, but its impact on behavior is not known. To determine the behavioral effects of rapamycin, male and female NS-Pten KO and wildtype (WT) mice were assigned as controls or administered 10 mg/kg of rapamycin for 2 weeks followed by behavioral testing. Rapamycin improved social behavior in both genotypes and stereotypic behaviors in NS-Pten KO mice. Rapamycin treatment resulted in a reduction of several measures of activity in the open field test in both genotypes. Rapamycin did not reverse the reduced anxiety behavior in KO mice. These data show the potential clinical use of mTOR inhibitors by showing its administration can reduce the production of autistic-like behaviors in NS-Pten KO mice.  相似文献   

12.
Metabolic dysfunction is a major driver of tumorigenesis. The serine/threonine kinase mechanistic target of rapamycin (mTOR) constitutes a key central regulator of metabolic pathways promoting cancer cell proliferation and survival. mTOR activity is regulated by metabolic sensors as well as by numerous factors comprising the phosphatase and tensin homolog/PI3K/AKT canonical pathway, which are often mutated in cancer. However, some cancers displaying constitutively active mTOR do not carry alterations within this canonical pathway, suggesting alternative modes of mTOR regulation. Since DEPTOR, an endogenous inhibitor of mTOR, was previously found to modulate both mTOR complexes 1 and 2, we investigated the different post-translational modification that could affect its inhibitory function. We found that tyrosine (Tyr) 289 phosphorylation of DEPTOR impairs its interaction with mTOR, leading to increased mTOR activation. Using proximity biotinylation assays, we identified SYK (spleen tyrosine kinase) as a kinase involved in DEPTOR Tyr 289 phosphorylation in an ephrin (erythropoietin-producing hepatocellular carcinoma) receptor–dependent manner. Altogether, our work reveals that phosphorylation of Tyr 289 of DEPTOR represents a novel molecular switch involved in the regulation of both mTOR complex 1 and mTOR complex 2.  相似文献   

13.
The mTOR (mammalian target of rapamycin) serine threonine kinase is involved in the regulation of the cell cycle, apoptosis and angiogenesis. mTOR inhibitors (rapamycin, or analogues such as CCI-779, RAD001, AP23573), which have been shown to have a potent anti-neoplastic effect in many solid tumour models, are now being used in clinical trials. Recent data have shown that the mTOR pathway is also aberrantly activated in hematological malignancies including acute myeloid leukemia (AML). This disease still has a bad prognosis and new therapeutic strategies are required. Rapamycin, used at low concentrations, induces the profound inhibition of AML cell clonogenic properties in 60% of cases while sparing their normal counterparts. Moreover, clinical responses have been achieved in poor-risk AML patients. In this review, we discuss the possible mechanisms of mTOR activation, the mechanisms involved in the inhibition of cell proliferation by rapamycin, the possible resistance mechanisms and ways of improving rapamycin efficacy in the context of AML.  相似文献   

14.
The mammalian target of rapamycin (mTOR) is a highly conserved serine/threonine kinase that can sense environmental stimuli such as growth factors, energy state, and nutrients. It is essential for cell growth, proliferation, and metabolism, but dysregulation of mTOR signaling pathway is also associated with a number of human diseases. Encouraging data from experiments have provided sufficient evidence for the relationship between the mTOR signaling pathway and Alzheimer’s disease (AD). Upregulation of mTOR signaling pathway is thought to play an important role in major pathological processes of AD. The mTOR inhibitors such as rapamycin have been proven to ameliorate the AD-like pathology and cognitive deficits effectively in a broad range of animal models. Application of mTOR inhibitors indicates the potential value of reducing mTOR activity as an innovative therapeutic strategy for AD. In this review, we will focus on the recent process in understanding mTOR signaling pathway and the vital involvement of this signaling pathway in the pathology of AD, and discuss the application of mTOR inhibitors as potential therapeutic agents for the treatment of AD.  相似文献   

15.
A series of benzofuran-3-one indole phosphatidylinositol-3-kinases (PI3K) inhibitors identified via HTS has been prepared. The optimized inhibitors possess single digit nanomolar activity against p110α (PI3K-α), good pharmaceutical properties, selectivity versus p110γ (PI3K-γ), and tunable selectivity versus the mammalian target of rapamycin (mTOR). Modeling of compounds 9 and 32 in homology models of PI3K-α and mTOR supports the proposed rationale for selectivity. Compounds show activity in multiple cellular proliferation assays with signaling through the PI3K pathway confirmed via phospho-Akt inhibition in PC-3 cells.  相似文献   

16.
Rapamycin derivatives allosterically targeting mTOR are currently FDA approved to treat advanced renal cell carcinoma (RCC), and catalytic inhibitors of mTOR/PI3K are now in clinical trials for treating various solid tumors. We sought to investigate the relative efficacy of allosteric versus catalytic mTOR inhibition, evaluate the crosstalk between the mTOR and MEK/ERK pathways, as well as the therapeutic potential of dual mTOR and MEK inhibition in RCC. Pharmacologic (rapamycin and BEZ235) and genetic manipulation of the mTOR pathway were evaluated by in vitro assays as monotherapy as well as in combination with MEK inhibition (GSK1120212). Catalytic mTOR inhibition with BEZ235 decreased proliferation and increased apoptosis better than allosteric mTOR inhibition with rapamycin. While mTOR inhibition upregulated MEK/ERK signaling, concurrent inhibition of both pathways had enhanced therapeutic efficacy. Finally, primary RCC tumors could be classified into subgroups [(I) MEK activated, (II) Dual MEK and mTOR activated, (III) Not activated, and (IV) mTOR activated] based on their relative activation of the PI3K/mTOR and MEK pathways. Patients with mTOR only activated tumors had the worst prognosis. In summary, dual targeting of the mTOR and MEK pathways in RCC can enhance therapeutic efficacy and primary RCC can be subclassified based on their relative levels of mTOR and MEK activation with potential therapeutic implications.  相似文献   

17.
The mammalian target of rapamycin (mTOR) is centrally involved in growth, survival and metabolism. In cancer, mTOR is frequently hyperactivated and is a clinically validated target for drug development. Until recently, we have relied largely on the use of rapamycin to study mTOR function and its anticancer potential. Recent insights now indicate that rapamycin is a partial inhibitor of mTOR through allosteric inhibition of mTOR complex-1 (mTORC1) but not mTOR complex-2 (mTORC2). Both the mechanism of action and the cellular response to mTORC1 inhibition by rapamycin and related drugs may limit the effectiveness of these compounds as antitumor agents. We and others have recently reported the discovery of second-generation ATP-competitive mTOR kinase inhibitors (TKIs) that bind to the active sites of mTORC1 and mTORC2, thereby targeting mTOR signaling function globally (see refs. 1-4). The discovery of specific, active-site mTOR inhibitors has opened a new chapter in the 40-plus year old odyssey that began with the discovery of rapamycin from a soil sample collected on Easter Island (see Vézina C, et al. J Antibiot 1975). Here, we discuss recent studies that highlight the emergence of rapamycin-resistant mTOR function in protein synthesis, cell growth, survival and metabolism. It is shown that these rapamycin-resistant mTOR functions are profoundly inhibited by TKIs. A more complete suppression of mTOR global signaling network by the new inhibitors is expected to yield a deeper and broader antitumor response in the clinic.  相似文献   

18.
The relative activity of the AKT kinase has been demonstrated to be a major determinant of sensitivity of tumor cells to mammalian target of rapamycin (mTOR) complex 1 inhibitors. Our previous studies have shown that the multifunctional RNA-binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates a salvage pathway facilitating internal ribosome entry site (IRES)-dependent mRNA translation of critical cellular determinants in an AKT-dependent manner following mTOR inhibitor exposure. This pathway functions by stimulating IRES-dependent translation in cells with relatively quiescent AKT, resulting in resistance to rapamycin. However, the pathway is repressed in cells with elevated AKT activity, rendering them sensitive to rapamycin-induced G(1) arrest as a result of the inhibition of global eIF-4E-mediated translation. AKT phosphorylation of hnRNP A1 at serine 199 has been demonstrated to inhibit IRES-mediated translation initiation. Here we describe a phosphomimetic mutant of hnRNP A1 (S199E) that is capable of binding both the cyclin D1 and c-MYC IRES RNAs in vitro but lacks nucleic acid annealing activity, resulting in inhibition of IRES function in dicistronic mRNA reporter assays. Utilizing cells in which AKT is conditionally active, we demonstrate that overexpression of this mutant renders quiescent AKT-containing cells sensitive to rapamycin in vitro and in xenografts. We also demonstrate that activated AKT is strongly correlated with elevated Ser(P)(199)-hnRNP A1 levels in a panel of 22 glioblastomas. These data demonstrate that the phosphorylation status of hnRNP A1 serine 199 regulates the AKT-dependent sensitivity of cells to rapamycin and functionally links IRES-transacting factor annealing activity to cellular responses to mTOR complex 1 inhibition.  相似文献   

19.
《Autophagy》2013,9(8):1066-1077
Cetuximab is an epidermal growth factor receptor (EGFR)-blocking antibody that is approved to treat several types of solid cancers in patients. We recently showed that cetuximab can induce autophagy in cancer cells by both inhibiting the class I phosphatidylinositol 3-kinase (PtdIns3K)/Akt/mammalian target of rapamycin (mTOR) pathway and activating the class III PtdIns3K (hVps34)/beclin 1 pathway. In the current study, we investigated the relationship between cetuximab-induced autophagy and apoptosis and the biological roles of autophagy in cetuximab-mediated cancer therapy. We found that cetuximab induced autophagy in cancer cells that show strong or weak induction of apoptosis after cetuximab treatment but not in those that show only cytostatic growth inhibition. Inhibition of cetuximab-induced apoptosis by a caspase inhibitor prevented the induction of autophagy. Conversely, inhibition of cetuximab-induced autophagy by silencing the expression of autophagy-related genes (Atg) or treating the cancer cells with lysosomal inhibitors enhanced the cetuximab-induced apoptosis, suggesting that autophagy was a protective cellular response to cetuximab treatment. On the other hand, cotreatment of cancer cells with cetuximab and the mTOR inhibitor rapamycin resulted in an Atg-dependent and lysosomal inhibition-sensitive death of cancer cells that show only growth inhibition or weak apoptosis after cetuximab treatment, indicating that cell death may be achieved by activating the autophagy pathway in these cells. Together, our findings may guide the development of novel clinical strategies for sensitizing cancer cells to EGFR-targeted therapy.  相似文献   

20.
Genetically engineered Sindbis viruses (SIN) are excellent oncolytic agents in preclinical models. Several human cancers have aberrant Akt signaling, and kinase inhibitors including rapamycin are currently tested in combination therapies with oncolytic viruses. Therefore, it was of interest to delineate possible cross-regulation between SIN replication and PI3K/Akt/mTOR signaling. Here, using HEK293T cells as host, we report the following key findings: (a) robust SIN replication occurs in the presence of mTOR specific inhibitors, rapamycin and torin1 or Ly294002 – a PI3K inhibitor, suggesting a lack of requirement for PI3K/Akt/mTOR signaling; (b) suppression of phosphorylation of Akt, mTOR and its effectors S6, and 4E-BP1 occurs late during SIN infection: a viral function that may be beneficial in counteracting cellular drug resistance to kinase inhibitors; (c) Ly294002 and SIN act additively to suppress PI3K/Akt/mTOR pathway with little effect on virus release; and (d) SIN replication induces host translational shut off, phosphorylation of eIF2α and apoptosis. This first report on the potent inhibition of Akt/mTOR signaling by SIN replication, bolsters further studies on the development and evaluation of engineered SIN genotypes in vitro and in vivo for unique cytolytic functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号