首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
BioH, an enzyme of biotin synthesis, plays an important role in fatty acid synthesis which assembles the pimelate moiety. Pimeloyl-acyl carrier protein (ACP) methyl ester, which is long known to be a biotin precursor, is the physiological substrate of BioH. Azelayl methyl ester, which has a longer chain than pimeloyl methyl ester, conjugated to ACP is also indeed accepted by BioH with very low rate of hydrolysis. To date, the substrate specificity for BioH and the molecular origin for the experimentally observed rate changes of hydrolysis by the chain elongation have remained elusive. To this end, we have investigated chain elongation effects on the structures by using the fully atomistic molecular dynamics simulations combined with binding free energy calculations. The results indicate that the substrate specificity is determined by BioH together with ACP. The added two methylenes would increase the structural flexibility by protein motions at the interface of ACP and BioH, instead of making steric clashes with the side chains of the BioH hydrophobic cavity. On the other hand, the slower hydrolysis of azelayl substrate is suggested to be associated with the loose of contacts between BioH and ACP, and with the lost electrostatic interactions of two ionic/hydrogen bonding networks at the interface of the two proteins. The present study provides important insights into the structure–function relationships of the complex of BioH with pimeloyl-ACP methyl ester, which could contribute to further understanding about the mechanism of the biotin synthetic pathway, including the catalytic role of BioH.  相似文献   

2.
3.
Recent trends in new drug discovery of anticancer drugs have made oncologists more aware of the fact that the new drug discovery must target the developing mechanism of tumorigenesis to improve the therapeutic efficacy of antineoplastic drugs. The drugs designed are expected to have high affinity towards the novel targets selectively. Current research highlights overexpression of CYP450s, particularly cytochrome P450 1A1 (CYP1A1), in tumour cells, representing a novel target for anticancer therapy. However, the CYP1 family is identified as posing significant problems in selectivity of anticancer molecules towards CYP1A1. Three members have been identified in the human CYP1 family: CYP1A1, CYP1A2 and CYP1B1. Although sequences of the three isoform have high sequence identity, they have distinct substrate specificities. The understanding of macromolecular features that govern substrate specificity is required to understand the interplay between the protein function and dynamics, design novel antitumour compounds that could be specifically metabolized by only CYP1A1 to mediate their antitumour activity and elucidate the reasons for differences in substrate specificity profile among the three proteins. In the present study, we employed a combination of computational methodologies: molecular docking and molecular dynamics simulations. We utilized eight substrates for elucidating the difference in substrate specificity of the three isoforms. Lastly, we conclude that the substrate specificity of a particular substrate depends upon the type of the active site residues, the dynamic motions in the protein structure upon ligand binding and the physico‐chemical characteristics of a particular ligand. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Modular polyketide synthases (PKSs) are large multi-enzymatic, multi-domain megasynthases, which are involved in the biosynthesis of a class of pharmaceutically important natural products, namely polyketides. These enzymes harbor a set of repetitive active sites termed modules and the domains present in each module dictate the chemical moiety that would add to a growing polyketide chain. This modular logic of biosynthesis has been exploited with reasonable success to produce several novel compounds by genetic manipulation. However, for harnessing their vast potential of combinatorial biosynthesis, it is essential to develop knowledge based in silico approaches for correlating the sequence and domain organization of PKSs to their polyketide products. In this work, we have carried out extensive sequence analysis of experimentally characterized PKS clusters to develop an automated computational protocol for unambiguous identification of various PKS domains in a polypeptide sequence. A structure based approach has been used to identify the putative active site residues of acyltransferase (AT) domains, which control the specificities for various starter and extender units during polyketide biosynthesis. On the basis of the analysis of the active site residues and molecular modelling of substrates in the active site of representative AT domains, we have identified a crucial residue that is likely to play a major role in discriminating between malonate and methylmalonate during selection of extender groups by this domain. Structural modelling has also explained the experimentally observed chiral preference of AT domain in substrate selection. This computational protocol has been used to predict the domain organization and substrate specificity for PKS clusters from various microbial genomes. The results of our analysis as well as the computational tools for prediction of domain organization and substrate specificity have been organized in the form of a searchable computerized database (PKSDB). PKSDB would serve as a valuable tool for identification of polyketide products biosynthesized by uncharacterized PKS clusters. This database can also provide guidelines for rational design of experiments to engineer novel polyketides.  相似文献   

5.
Metallo-beta-lactamases have raised concerns due to their ability to hydrolyze a broad spectrum of beta-lactam antibiotics. The G262S point mutation distinguishing the metallo-beta-lactamase IMP-1 from IMP-6 has no effect on the hydrolysis of the drugs cephalothin and cefotaxime, but significantly improves catalytic efficiency toward cephaloridine, ceftazidime, benzylpenicillin, ampicillin, and imipenem. This change in specificity occurs even though residue 262 is remote from the active site. We investigated the substrate specificities of five other point mutants resulting from single-nucleotide substitutions at positions near residue 262: G262A, G262V, S121G, F218Y, and F218I. The results suggest two types of substrates: type I (nitrocefin, cephalothin, and cefotaxime), which are converted equally well by IMP-6, IMP-1, and G262A, but even more efficiently by the other mutants, and type II (ceftazidime, benzylpenicillin, ampicillin, and imipenem), which are hydrolyzed much less efficiently by all the mutants. G262V, S121G, F218Y, and F218I improve conversion of type I substrates, whereas G262A and IMP-1 improve conversion of type II substrates, indicating two distinct evolutionary adaptations from IMP-6. Substrate structure may explain the catalytic efficiencies observed. Type I substrates have R2 electron donors, which may stabilize the substrate intermediate in the binding pocket. In contrast, the absence of these stabilizing interactions with type II substrates may result in poor conversion. This observation may assist future drug design. As the G262A and F218Y mutants confer effective resistance to Escherichia coli BL21(DE3) cells (high minimal inhibitory concentrations), they are likely to evolve naturally.  相似文献   

6.
Restriction endonucleases have proven to be especially resistant to engineering altered substrate specificity, in part, due to the requirement of a cognate DNA methyltransferase for cellular DNA protection. The thermophilic restriction endonuclease BstYI recognizes and cleaves all hexanucleotide sequences described by 5'-R GATCY-3' (where R=A or G and Y=C or T). The recognition of a degenerate sequence is a relatively common feature of the more than 3000 characterized restriction endonucleases. However, very little is known concerning substrate recognition by such an enzyme. Our objective was to investigate the substrate specificity of BstYI by attempting to increase the specificity to recognition of only AGATCT. By a novel genetic selection/screening process, two BstYI variants were isolated with a preference for AGATCT cleavage. A fundamental element of the selection process is modification of the Escherichia coli host genomic DNA by the BglII N4-cytosine methyltransferase to protect AGATCT sites. The amino acid substitutions resulting in a partial change of specificity were identified and combined into one superior variant designated NN1. BstYI variant NN1 displays a 12-fold preference for cleavage of AGATCT over AGATCC or GGATCT. Moreover, cleavage of the GGATCC sequence is no longer detected. This study provides further evidence that laboratory evolution strategies offer a powerful alternative to structure-guided protein design.  相似文献   

7.
海因酶热稳定性及底物特异性研究进展   总被引:2,自引:0,他引:2  
海因酶是在微生物中广泛分布的能水解5-取代海因衍生物制备光学纯氨基酸的关键生物催化剂,在各种氨基酸的酶法生产中具有良好的应用前景。着重概述了海因酶的热稳定性、底物特异性研究及应用,并讨论了其发展方向。  相似文献   

8.
The active site residue phenylalanine 313 is conserved in the sequences of all known tryptophan hydroxylases. The tryptophan hydroxylase F313W mutant protein no longer shows a preference for tryptophan over phenylalanine as a substrate, consistent with a role of this residue in substrate specificity. A tryptophan residue occupies the homologous position in tyrosine hydroxylase. The tyrosine hydroxylase W372F mutant enzyme does not show an increased preference for tryptophan over tyrosine or phenylalanine, so that this residue cannot be considered the dominant factor in substrate specificity in this family of enzymes.  相似文献   

9.
10.
Molecular dynamics (MD) simulations have been performed on quercetin 2,3 dioxygenase (2,3QD) to study the mobility and flexibility of the substrate cavity. 2,3QD is the only firmly established Cu-containing dioxygenase known so far. It catalyses the breakage of the O-heterocycle of flavonols. The substrates occupy a shallow and overall hydrophobic cavity proximal to the metal centre of the homo-dimeric enzyme. The linker connecting the C-terminal and N-terminal domains in the monomer is partly disordered in the crystal structure and part of it forms a flexible lid at the entrance of the substrate cavity. This loop has been tentatively assigned a role in the enzyme mechanism: it helps lock the substrate into place. The dynamics of this loop has been investigated by MD simulation. The initial coordinates were taken from the crystal structure of 2,3QD in the presence of the substrate kaempferol (KMP). After equilibration and simulation over 7.2ns the substrate was removed and another equilibration and simulation of 7.2ns was performed. The results show that the structures of the free enzyme as well as of the enzyme-substrate complex are stable in MD simulation. The linker shows strongly enhanced mobility in the loop region that is close to the entrance to the substrate cavity (residues 154-169). Movement of the loop takes place on a timescale of 5-10ns. To confirm the conclusions about the loop dynamics drawn from the 7.2ns simulation, the simulation was extended with another 8ns. When substrate binds into the cavity the loop orders remarkably, although mobility is retained by residues 155-158. Some regions of the loop (residues 154-160 and 164-176) move over a considerable distance and approach the substrate closely, reinforcing the idea that they lock the substrate in the substrate cavity. The enthalpic component of the interaction of the loop with the protein and the KMP appears to favour the locking of the substrate. Two water molecules were found immobilised in the cavity, one of which exhibited rotation on the picosecond timescale. When the substrate is removed, the empty cavity fills up with water within 200ps.  相似文献   

11.
Covariation between sites can arise due to a common evolutionary history. At the same time, structure and function of proteins play significant role in evolvability of different sites that are not directly connected with the common ancestry. The nature of forces which cause residues to coevolve is still not thoroughly understood, it is especially not clear how coevolutionary processes are related to functional diversification within protein families. We analyzed both functional and structural factors that might cause covariation of specificity determinants and showed that they more often participate in coevolutionary relationships with each other and other sites compared with functional sites and those sites that are not under strong functional constraints. We also found that protein sites with higher number of coevolutionary connections with other sites have a tendency to evolve slower. Our results indicate that in some cases coevolutionary connections exist between specificity sites that are located far away in space but are under similar functional constraints. Such correlated changes and compensations can be realized through the stepwise coevolutionary processes which in turn can shed light on the mechanisms of functional diversification.  相似文献   

12.
The human cytidine deaminase family of APOBEC3s (A3s) plays critical roles in both innate immunity and the development of cancers. A3s comprise seven functionally overlapping but distinct members that can be exploited as nucleotide base editors for treating genetic diseases. Although overall structurally similar, A3s have vastly varying deamination activity and substrate preferences. Recent crystal structures of ssDNA-bound A3s together with experimental studies have provided some insights into distinct substrate specificities among the family members. However, the molecular interactions responsible for their distinct biological functions and how structure regulates substrate specificity are not clear. In this study, we identified the structural basis of substrate specificities in three catalytically active A3 domains whose crystal structures have been previously characterized: A3A, A3B- CTD, and A3G-CTD. Through molecular modeling and dynamic simulations, we found an interdependency between ssDNA substrate binding conformation and nucleotide sequence specificity. In addition to the U-shaped conformation seen in the crystal structure with the CTC0 motif, A3A can accommodate the CCC0 motif when ssDNA is in a more linear (L) conformation. A3B can also bind both U- and L-shaped ssDNA, unlike A3G, which can stably recognize only linear ssDNA. These varied conformations are stabilized by sequence-specific interactions with active site loops 1 and 7, which are highly variable among A3s. Our results explain the molecular basis of previously observed substrate specificities in A3s and have implications for designing A3-specific inhibitors for cancer therapy as well as engineering base-editing systems for gene therapy.  相似文献   

13.
The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the β-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the β-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the β-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the β-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.  相似文献   

14.
The 2.2 Å X-ray crystal structure of Candida tenuis xylose reductase (AKR2B5) bound with NADP+ reveals that Phe-114 contributes to the substrate binding pocket of the enzyme. In the related human aldose reductase (AKR1B1), this phenylalanine is replaced by a tryptophan. The side chain of Trp was previously implicated in forming a hydrogen bond with bound substrate or inhibitor. The apparent Michaelis constant of AKR2B5 for xylose (Km≈90 mM) is 60 times that of AKR1B1, perhaps because critical enzyme–substrate interactions of Trp are not available to Phe-114. We, therefore, prepared a Phe-114→Trp mutant (F114W) of AKR2B5, to mimic the aldose reductase relationship in xylose reductase. Detailed analysis of the kinetic consequences in purified F114W revealed that the Km values for xylose and xylitol at pH 7.0 and 25°C were increased 5.1- and 4.4-fold, respectively, in the mutant compared with the wild-type. Turnover numbers (kcat) of F114W for xylose reduction and xylitol oxidation were half those of the wild-type. Apparent dissociation constants of NADH (KiNADH=44 µM) and NAD+ (KiNAD+=177 µM) were increased 1.6- and 1.4-fold in comparison with values of KiNADH and KiNAD+ for the wild-type, respectively. Catalytic efficiencies (kcat/Km) for NADH-dependent reduction of different aldehydes were between 3.1- and 31.5-fold lower than the corresponding kcat/Km values of the wild-type. Therefore, replacement of Phe-114 with Trp weakens rather than strengthens apparent substrate binding by AKR2B5, suggesting that xylose reductase exploits residue 114 in a different manner from aldose reductase.  相似文献   

15.
Noskov SY 《Proteins》2008,73(4):851-863
The recently published X-ray structure of LeuT, a Na(+)/Cl(-)-dependent neurotransmitter transporter, has provided fresh impetus to efforts directed at understanding the molecular principles governing specific neurotransmitter transport. The combination of the LeuT crystal structure with the results of molecular simulations enables the functional data on specific binding and transport to be related to molecular structure. All-atom FEP and molecular dynamics (MD) simulations of LeuT embedded in an explicit membrane were performed alongside a decomposition analysis to dissect the molecular determinants of the substrate specificity of LeuT. It was found that the ligand must be in a zwitterionic (ZW) form to bind tightly to the transporter. The theoretical results on the absolute binding-free energies for leucine, alanine, and glycine show that alanine can be a potent substrate for LeuT, although leucine is preferred, which is consistent with the recent experimental data (Singh et al., Nature 2007;448:952-956). Furthermore, LeuT displays robust specificity for leucine over glycine. Interestingly, the ability of LeuT to discriminate between substrates relies on the dynamics of residues that form its binding pocket (e.g., F253 and Q250) and the charged side chains (R30-D404) from a second coordination shell. The water-mediated R30-D404 salt bridge is thought to be part of the extracellular (EC) gate of LeuT. The introduction of a polar ligand such as glycine to the water-depleted binding pocket of LeuT gives rise to structural rearrangements of the R30-D404-Q250 hydrogen-bonding network and leads to increased hydration of the binding pocket. Conformational changes associated with the broken hydrogen bond between Q250 and R30 are shown to be important for tight and selective ligand binding to LeuT.  相似文献   

16.
Summary In facilitated transport systems the carrier reorientation step is shown to be largely independent of the forces of interaction between the substrate and the carrier site, whereas in coupled systems (obligatory exchange or cotransport) reorientation proceeds at the expense of the binding force developed in the transition state. In consequence, the expression of substrate specificity is expected to differ in the two systems. In the facilitated transport of analogs no larger than the normal substrate, the affinity but not the maximum rate of transport can vary widely; with larger analogs, both the affinity and rale can vary if steric constraints are more severe in the translocation step than in binding. In coupled transport, by contrast, the translocation step can be highly sensitive to the structure of the substrate, and binding much less sensitive. The theory agrees with published observations on facilitated systems for choline and glucose in erythrocytes, as well as on Na+-coupled systems for the same substrates in other cells. The following mechanism, which could account for the behavior, is proposed. In facilitated systems, the transport site fits the substrate closely and retains its shape as the carrier undergoes reorientation. In coupled systems, the site is initially looser, but during carrier reorientation it contracts around the substrate. In both systems, the carrier encloses the substrate during the translocation step, though for a different reason: in coupled but not in facilitated systems the binding force enormously increases in the enclosed state, through a chelation effect. In both systems, steric interference with enclosure retards the translocation of bulky substrate analogs.  相似文献   

17.
The cationic amphiphile, cholesteryl-3-carboxyamidoethylene-trimethylammonium iodide, can alter the substrate specificity of protein kinase C (PKC). The phosphorylation of histone catalyzed by PKC requires the binding of the enzyme to phospholipid vesicles. This cationic amphiphile reduces both the binding of PKC to lipid and as a consequence its rate of phosphorylation of histone. In contrast, PKC bound to large unilamellar vesicles (LUVs) composed of 50 mol % POPS, 20 mol % POPC, and 30 mol % of this amphiphile catalyzes protamine sulfate phosphorylation by an almost 4 fold greater rate. This activation requires phosphatidylserine (PS) and is inhibited by Ca2+. The extent of activation is affected by the time of incubation of PKC with LUVs. This data suggests a novel mechanism by which PKC-dependent signal transduction pathways may be altered by altering the protein targets of this enzyme.  相似文献   

18.
Bacillaene生物合成过程中,聚酮合酶第一个延伸模块的酮还原酶结构域(Bac KR1)既催化α酮基的还原,也催化β酮基的还原,具有天然的底物宽泛性。为进一步研究该结构域的底物特异性,在大肠杆菌中对其进行了异源表达。体外酶学分析表明Bac KR1可以催化聚酮类底物(±)-2-甲基-3-氧代戊酸-乙酰半胱胺硫酯外消旋体的立体选择性还原,仅生成4种非对映异构体中的一种,此外Bac KR1还可以催化环己酮和对氯苯乙酮等非聚酮类底物的还原,暗示了聚酮合酶中酮还原酶结构域作为生物催化剂的潜力。  相似文献   

19.
The substrate specificity of fucosyltransferase (FT) from rat forebrain and cerebellum was studied using synthetic acceptors. Of 16 acceptors tested, only those containing the Galβ1-4GlcNAcβ1-R fragment were subjected to enzymic fucosylation. The isomer with a 1–3 bond as well as lactose and oligosaccharides with an additional Neu5Ac residue attached to Gal or a Fuc residue attached to GlcNAc were not fucosylated, whereas Fucα1-2Galβ1-4GlcNAc displayed the same substrate properties as Galβ1-4GlcNAc. FT from the cerebellum and forebrain was shown to have a specificity similar to that of mammalian FT IV. The activity of the cerebellum FT with all types of substrates was higher than that of FT isolated from the forebrain, the specificity profiles being similar. This communication is dedicated to the 70th birthday of Prof. A.Ya. Khorlin.  相似文献   

20.
The crystal structures of the catalytic domain of human phenylalanine hydroxylase (hPheOH) in complex with the physiological cofactor 6(R)-L-erythro-5,6,7,8-tetrahydrobiopterin (BH(4)) and the substrate analogues 3-(2-thienyl)-L-alanine (THA) or L-norleucine (NLE) have been determined at 2.0A resolution. The ternary THA complex confirms a previous 2.5A structure, and the ternary NLE complex shows that similar large conformational changes occur on binding of NLE as those observed for THA. Both structures demonstrate that substrate binding triggers structural changes throughout the entire protomer, including the displacement of Tyr138 from a surface position to a buried position at the active site, with a maximum displacement of 20.7A for its hydroxyl group. Two hinge-bending regions, centred at Leu197 and Asn223, act in consort upon substrate binding to create further large structural changes for parts of the C terminus. Thus, THA/L-Phe binding to the active site is likely to represent the epicentre of the global conformational changes observed in the full-length tetrameric enzyme. The carboxyl and amino groups of THA and NLE are positioned identically in the two structures, supporting the conclusion that these groups are of key importance in substrate binding, thus explaining the broad non-physiological substrate specificity observed for artificially activated forms of the enzyme. However, the specific activity with NLE as the substrate was only about 5% of that with THA, which is explained by the different affinities of binding and different catalytic turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号