首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, we explored the acid-induced unfolding pathway of non-porin outer membrane protein (OMP), an immunogenic protein from Salmonella Typhi, by monitoring the conformational changes over a pH range of 1.0–7.0 by circular dichroism, intrinsic fluorescence, ANS binding, acrylamide quenching, and dynamic light scattering. The spectroscopic measurements showed that OMP in its native state at pH 7.0 exists in more stable and compact conformation. In contrast, at pH 2.0, OMP retains substantial amount of secondary structure, disrupted side chain interactions, increased hydrodynamic radii, and nearly four-fold increase in ANS fluorescence with respect to the native state, indicating that MG state exists at pH 2.0. Quenching of tryptophan fluorescence by acrylamide further confirmed the accumulation of a partially unfolded state between native and unfolded state. The effect of pH on the conformation and thermostability of OMP points towards its heat resistance at neutral pH (T m?~?69 °C at pH 7.0, monitored by change in MRE222 nm). Acid unfolded state was also characterized by the lack of a cooperative thermal transition. All these results suggested that acid-induced unfolded state of OMP at pH 2.0 represented the molten globule state. The chemical denaturation studies with GuHCl and urea as denaturants showed dissimilar results. The chemical unfolding experiments showed that in both far-UV CD and fluorescence measurements, GuHCl is more efficient than urea. GuHCl is characterized by low C m (~1 M), while urea is characterized by high C m (~3 M). The fully unfolded states were reached at 2 M GuHCl and 4 M urea concentration, respectively. This study adds to several key considerations of importance in the development of therapeutic agents against typhoid fever for clinical purposes.  相似文献   

2.
Human carbonic anhydrase IX (CAIX) has evolved as a promising biomarker for cancer prognosis, due to its overexpression in various cancers and restricted expression in normal tissue. However, limited information is available on its biophysical behavior. The unfolding of CAIX in aqueous urea solution was studied using all-atom molecular dynamics simulation approach. The results of this study revealed a stable intermediate state along the unfolding pathway of CAIX. At intermediate concentrations of urea (2.0–4.0 M), the protein displays a native-like structure with a large population of its secondary structure and hydrophobic contacts remaining intact in addition to small confined overall motions. Beyond 4.0 M urea, the unfolding is more gradual and at 8.0 M urea the structure is largely collapsed due to the solvent effect. The hydrophobic contact analysis suggests that the contact in terminal α-helices is separated initially which propagates in the loss of contacts from centrally located β-sheets. The reduction of 60–65% tertiary contacts in 7.0–8.0 M urea suggested the presence of residual structure in unfolded state and is confirmed with structural snap shot. Free energy landscape analysis suggested that unfolding of CAIX exists through the different intermediate states.  相似文献   

3.
4.
Retention of total activity of the subtilisin-like serine protease from Beauveria sp. MTCC 5184 (Bprot) in the vicinity of (1) 3 M GdnHCl for 12 h, (2) 50 % methanol and dimethyl sulfoxide each for 24 h, and (3) proteolytic enzymes (trypsin, chymotrypsin, and proteinase K) for 48 h led to expect the enzyme to be a kinetically stable protein. Also, the structure of the protein was stable at pH 2.0. Biophysical characterization and conformational transitions were monitored using steady-state and time-resolved fluorescence, FTIR, and CD spectroscopy. Single tryptophan in the protein exists as two conformers, in hydrophobic and polar environment. The secondary structure of Bprot was stable in 3 M GdnHCl as seen in far-UV CD spectra. The active fraction of Bprot obtained from size-exclusion chromatography in the presence of GdnHCl (1.0–3.0 M) eluted at reduced retention time. The peak area of inactive or denatured protein with the same retention time as that of native protein increased with increasing concentration of denaturant (1.0–4.0 M GdnHCl). However, the kinetics of GdnHCl-induced unfolding as studied from intrinsic fluorescence revealed k unf of native protein to be 5.407 × 10?5 s?1 and a half-life of 3.56 h. The enzyme is thermodynamically stable in spite of being resistant to the denaturant, which could be due to the effect of GdnHCl imparting rigidity to the active fraction and simultaneously unfolding the partially unfolded protein that exists in equilibrium with the folded active protein. Thermal and pH denaturation of Bprot exhibited interesting structural transitions.  相似文献   

5.
Human upstream binding factor (hUBF) HMG Box‐5 is a highly conserved protein domain, containing 84 amino acids and belonging to the family of the nonspecific DNA‐binding HMG boxes. Its native structure adopts a twisted L shape, which consists of three α‐helices and two hydrophobic cores: the major wing and the minor wing. In this article, we report a reversible three‐state thermal unfolding equilibrium of hUBF HMG Box‐5, which is investigated by differential scanning calorimetry (DSC), circular dichroism spectroscopy, fluorescence spectroscopy, and NMR spectroscopy. DSC data show that Box‐5 unfolds reversibly in two separate stages. Spectroscopic analyses suggest that different structural elements exhibit noncooperative transitions during the unfolding process and that the major form of the Box‐5 thermal intermediate ensemble at 55°C shows partially unfolded characteristics. Compared with previous thermal stability studies of other boxes, it appears that Box‐5 possesses a more stable major wing and two well separated subdomains. NMR chemical shift index and sequential 1HNi1HNi+1 NOE analyses indicate that helices 1 and 2 are native‐like in the thermal intermediate ensemble, while helix 3 is partially unfolded. Detailed NMR relaxation dynamics are compared between the native state and the intermediate ensemble. Our results implicate a fluid helix‐turn‐helix folding model of Box‐5, where helices 1 and 2 potentially form the helix 1‐turn‐helix 2 motif in the intermediate, while helix 3 is consolidated only as two hydrophobic cores form to stabilize the native structure. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Effect of extraneous zinc on calf intestinal alkaline phosphatase   总被引:1,自引:0,他引:1  
The effect of extraneous zinc on calf intestinal alkaline phosphatase was studied for quick reversible binding and slow irreversible binding of zinc ions at various concentrations. Under the conditions of slow binding of zinc to CIP increasing Zn2+ (less than 1.0 mM, nM/nE 1.0 × 106) inhibited enzymatic activity, and further increasing Zn2+ resulted in an increase of activity. For quick reversible binding of Zn2+, the effect on CIP activity changed at lower concentrations of substrate, indicating a complex cooperativity between Zn2+ and pNPP. Both protein intrinsic emission fluorescence and ANS-bound protein fluorescence, as well as circular dichroism spectra have shown that the binding of zinc ions changed the enzyme conformation, which was the reason for the changes in enzyme activity induced by extraneous zinc.  相似文献   

7.
Zincon (2-carboxy-2′-hydroxy-5′-sulfoformazylbenzene) has long been known as an excellent colorimetric reagent for the detection of zinc and copper ions in aqueous solution. To extend the chelator’s versatility to the quantification of metal ions in metalloproteins, the spectral properties of Zincon and its complexes with Zn2+, Cu2+, and Co2+ were investigated in the presence of guanidine hydrochloride and urea, two common denaturants used to labilize metal ions in proteins. These studies revealed the detection of metals to be generally more sensitive with urea. In addition, pH profiles recorded for these metals indicated the optimal pH for complex formation and stability to be 9.0. As a consequence, an optimized method that allows the facile determination of Zn2+, Cu2+, and Co2+ with detection limits in the high nanomolar range is presented. Furthermore, a simple two-step procedure for the quantification of both Zn2+ and Cu2+ within the same sample is described. Using the prototypical Cu2+/Zn2+-protein superoxide dismutase as an example, the effectiveness of this method of dual metal quantification in metalloproteins is demonstrated. Thus, the spectrophotometric determination of metal ions with Zincon can be exploited as a rapid and inexpensive means of assessing the metal contents of zinc-, copper-, cobalt-, and zinc/copper-containing proteins.  相似文献   

8.
An extracellular polygalacturonase was isolated from 5-day culture filtrates of Thermoascus aurantiacus CBMAI-756 and purified by gel filtration and ion-exchange chromatography. The enzyme was maximally active at pH 5.5 and 60–65°C. The apparent K m with citrus pectin was 1.46 mg/ml and the V max was 2433.3 μmol/min/mg. The apparent molecular weight of the enzyme was 30 kDa. The enzyme was 100% stable at 50°C for 1 h and showed a half-life of 10 min at 60°C. Polygalacturonase was stable at pH 5.0–5.5 and maintained 33% of initial activity at pH 9.0. Metal ions, such as Zn+2, Mn+2, and Hg+2, inhibited 50, 75 and 100% of enzyme activity. The purified polygalacturonase was shown to be an endo/exo-enzyme, releasing mono, di and tri-galacturonic acids within 10 min of hydrolysis.  相似文献   

9.
A new fluorescent Zn2+ indicator, namely, ICPBCZin was synthesized and the spectral profile of its free and Zn2+ bound forms was studied. The newly synthesized zinc indicator incorporates as chromophore the chromeno [3′,2′:3,4]pyrido[1,2a] [1,3]benzimidazole moiety and belongs to the dicarboxylate-type of zinc probes. The compound is excited with visible light, exhibits high selectivity for zinc in the presence of calcium and other common biological ions, and its Zn2+ dissociation constant is 4.0 nM. Fluorescence spectra studies of ICPBCZin indicated a clear shift in its emission wavelength maxima upon Zn2+ binding, as it belongs to the class of Photoinduced Charge Transfer (PCT) indicators, along with changes in fluorescence intensity that enable the compound to be used as a ratiometric, visible-excitable Zn2+ probe.  相似文献   

10.
Fluorescence and circular dichroism data as a function of temperature were obtained to characterize the unfolding of nuclease A and two of its less stable mutants. These spectroscopic data were obtained with a modified instrument that enables the nearly simultaneous detection of both fluorescence and CD data on the same sample. A global analysis of these multiple datasets yielded an excellent fit of a model that includes a change in the heat capacity change, ΔCp, between the unfolded and native states. This analysis gives a ΔCp of 2.2 kcal/mol/·K for thermal unfolding of the WT protein and 1.3 and 1.8 kcal/mol/K for the two mutants. These ΔCp values are consistent with significant population of the cold unfolded state at ∼0°C. Independent evidence for the existence of a cold unfolded state is the observation of a separately migrating peak in size exclusion chromatography. The new chromatographic peak is seen near 0°C, has a partition coefficient corresponding to a larger hydrodynamic radius, and shows a red-shifted fluorescence spectrum, as compared to the native protein. Data also indicate that the high-temperature unfolded form of mutant nuclease is relatively compact. Size exclusion chromatography shows the high temperature unfolded form to have a hydrodynamic radius that is larger than that for the native form, but smaller than that for the urea or pH-induced unfolded forms. Addition of chemical denaturants to the high-temperature unfolded form causes a further unfolding of the protein, as indicated by an increase in the apparent hydrodynamic radius and a decrease in the rotational correlation time for Trp140 (as determined by fluorescence anisotropy decay measurements). Proteins 28:227–240, 1997 © 1997 Wiley-Liss Inc.  相似文献   

11.
The β-defensins, expressed in epithelial cells of multiple tissues including intestine, play a critical role in the mammalian innate immunity. However, it is little known about the role of functional nutrients in the regulation of porcine β-defensins’ expressions in intestinal epithelial cells. The present study was conducted to determine the hypothesis that zinc and l-isoleucine regulate the expressions of porcine β-defensins in IPEC-J2 cells. Cells were cultured in DMEM/F12 medium containing supplemental 0–500 μg/mL l-isoleucine or 0–500 μmol/mL zinc sulfate that was used to increase the concentration of Zn2+ in the medium. At 12 h after the treatment by the appropriate concentrations of l-isoleucine or Zn2+, the mRNA and protein expressions of porcine β-defensin 1, 2 and 3 were increased (P < 0.05), and reached their maximum after treatment with 25 or 100 μmol/mL zinc sulfate and 25 or 50 μg/mL isoleucine (P < 0.05). These results suggested that both Zn2+ and l-isoleucine could induce β-defensins’ expressions in porcine intestinal epithelial cells.  相似文献   

12.
《Process Biochemistry》2014,49(5):821-829
Arginine kinase plays an important role in the cellular energy metabolism of invertebrates. We investigated the effects of Zn2+ on the enzymatic activity and unfolding and aggregation of Euphausia superba arginine kinase (ESAK). Zn2+ inhibited the activity of ESAK (IC50 = 0.027 ± 0.002 mM) following first-order kinetics consistent with the transition from a mono-phasic to a bi-phasic reaction. Double-reciprocal Lineweaver–Burk plots indicated that Zn2+ induced non-competitive inhibition of arginine and ATP. Circular dichroism spectra and spectrofluorometry results showed that Zn2+ induced secondary and tertiary structural changes in ESAK with exposure of hydrophobic surfaces and directly induced ESAK aggregation. The addition of osmolytes such as glycine and proline successfully blocked ESAK aggregation, recovering the conformation and activity of ESAK. Our study demonstrates the effect of Zn2+ on ESAK enzymatic function and folding and unfolding mechanisms, and might provide important insights into other metabolic enzymes of invertebrates in extreme climatic marine environments.  相似文献   

13.
The influence of pH (3.0, 5.0, and 7.0) and ionic strength (0, 50, 100 mM NaCl) on the physicochemical and emulsifying properties of a cruciferin-rich protein isolate (CPI) was investigated. Surface charge on the CPI was found to substantially reduced in the presence of NaCl. Surface hydrophobicity was found to be the lowest for CPI at pH 7.0 with 100 mM NaCl, and highest at pH 3.0 without NaCl. Solubility was found to be lowest at pH 5.0 and 7.0 without NaCl (<20 %), however greatly improved for all other pH and NaCl conditions (>80 %). Interfacial tension was found to be lowest at 10–11 mN/m for pH 5.0–0 mM NaCl and pH 7.0–50/100 mM NaCl, whereas under all other conditions interfacial tension was higher (15+ mN/m). Overall, NaCl has no effect on EAI at pH 3.0 where it ranged between 18.8 and 19.4 m2/g. At pH 5.0, EAI decreased from 21.1 to 12.8 m2/g as NaCl levels increased from 0 to 100 mM. At pH 7.0, EAI values were found to decrease from 14.9 to 5.2 m2/g as NaCl levels were raised from 0 to 100 mM. Overall, ESI was reduced with the addition of NaCl from ~15.7 min at 0 mM NaCl to ~11.6 min and ~12.0 min for the 50 and 100 mM NaCl levels, respectively.  相似文献   

14.
Human serum albumin (HSA) is an abundant multiligand carrier protein, linked to progression of Alzheimer’s disease (AD). Blood HSA serves as a depot of amyloid β (Aβ) peptide. Aβ peptide-buffering properties of HSA depend on interaction with its ligands. Some of the ligands, namely, linoleic acid (LA), zinc and copper ions are involved into AD progression. To clarify the interplay between LA and metal ion binding to HSA, the dependence of LA binding to HSA on Zn2+, Cu2+, Mg2+ and Ca2+ levels and structural consequences of these interactions have been explored. Seven LA molecules are bound per HSA molecule in the absence of the metal ions. Zn2+ binding to HSA causes a loss of one bound LA molecule, while the other metals studied exert an opposite effect (1–2 extra LA molecules are bound). In most cases, the observed effects are not related to the metal-induced changes in HSA quaternary structure. However, the Zn2+-induced decline in LA capacity of HSA could be due to accumulation of multimeric HSA forms. Opposite to Ca2+/Mg2+-binding, Zn2+ or Cu2+ association with HSA induces marked changes in its hydrophobic surface. Overall, the divalent metal ions modulate LA capacity and affinity of HSA to a different extent. LA- and Ca2+-binding to HSA synergistically support each other. Zn2+ and Cu2+ induce more pronounced changes in hydrophobic surface and quaternary structure of HSA and its LA capacity. A misbalanced metabolism of these ions in AD could modify interactions of HSA with LA, other fatty acids and hydrophobic substances, associated with AD.  相似文献   

15.
A Zn2+-dependent protein with a special affinity for egg yolk was isolated from boar seminal plasma. It was electrophoretically homogeneous after separation on chelating Sepharose 6B, and had a subunit structure on SDS-gel electrophoresis with three fractions of molecular weights 25 000, 38 000 and 64 000. Precipitating activity toward egg yolk (optimal at pH 6.5–7.0) was stimulated by chloride ions and inhibited by a high concentration of zinc ions. The protein maintained its precipitating activity after incubation at 100°C and −196°C as well as after treatment with proteolytic enzymes. Indirect immunofluorescence showed that the Zn2+-dependent protein was secreted by epithelial cells of the seminal vesicle glands. The protein enveloped the spermatozoa after ejaculation, especially in the middle-piece area.  相似文献   

16.
The cold-shock protein CspB folds rapidly in a N <= => U two-state reaction via a transition state that is about 90% native in its interactions with denaturants and water. This suggested that the energy barrier to unfolding is overcome by processes occurring in the protein itself, rather than in the solvent. Nevertheless, CspB unfolding depends on the solvent viscosity. We determined the activation volumes of unfolding and refolding by pressure-jump and high-pressure stopped-flow techniques in the presence of various denaturants. The results obtained by these methods agree well. The activation volume of unfolding is positive (Delta V(++)(NU)=16(+/-4) ml/mol) and virtually independent of the nature and the concentration of the denaturant. We suggest that in the transition state the protein is expanded and water molecules start to invade the hydrophobic core. They have, however, not yet established favorable interactions to compensate for the loss of intra-protein interactions. The activation volume of refolding is positive as well (Delta V(++)(NU)=53(+/-6) ml/mol) and, above 3 M urea, independent of the concentration of the denaturant. At low concentrations of urea or guanidinium thiocyanate, Delta V(++)(UN) decreases significantly, suggesting that compact unfolded forms become populated under these conditions.  相似文献   

17.
Identification and characterization of ensembles of intermediate states remains an important objective in describing protein folding in atomic detail. The 67-residue villin headpiece, HP67, consists of an N-terminal subdomain (residues 10–42) that transiently unfolds at equilibrium under native-like conditions and a highly stable C-terminal subdomain (residues 43–76). The transition between folded and unfolded states of the N-terminal domain has been characterized previously by 15N NMR relaxation dispersion measurements (Grey et al. in J Mol Biol 355:1078, 2006). In the present work, 13C spin relaxation was used to further characterize backbone and hydrophobic core contributions to the unfolding process. Relaxation of 13Cα spins was measured using the Hahn echo technique at five static magnetic fields (11.7, 14.1, 16.4, 18.8, and 21.1 T) and the Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion method at a static magnetic field of 14.1 T. Relaxation of methyl 13C spins was measured using CPMG relaxation dispersion experiments at static magnetic fields of 14.1 and 18.8 T. Results for 13C and 15N spins yielded a consistent model in which the partially unfolded intermediate state of the N-terminal subdomain maintains residual structure for residues near the unprotonated His41 imidazole ring and in the interface between the N- and C-terminal subdomains. In addition, a second faster process was detected that appears to represent local dynamics within the folded state of the molecule and is largely confined to the hydrophobic interface between the N- and C-terminal subdomains.  相似文献   

18.
Electronic absorption and resonance Raman spectra of ferric cytochrome c embedded in wet silica gels, in the presence of guanidine HCl as unfolding agent, between pH 0.35 and 7.0 are presented. The data clearly show that the ferric form of the protein encapsulated in sol–gel preserves its active site conformation. However, the spectra of the unfolded embedded protein are different from the corresponding spectra in solution suggesting that a strong interaction between the protein and the sol–gel takes place upon unfolding. The unfolding process mainly depends on the interaction between the exposed positive charges of the unfolded protein and the negatively charged functional groups of the silica surfaces. While this interaction partially stabilizes the protein in its native structure even at very acidic pH, in the presence of denaturants it has the opposite effect, causing mainly the weakening of both the heme-protein and the heme-ligand interactions.  相似文献   

19.
20.
Zheng B  Zhang Q  Gao J  Han H  Li M  Zhang J  Qi J  Yan J  Gao GF 《PloS one》2011,6(5):e19510

Background

The scavenging ability of sufficient divalent metal ions is pivotal for pathogenic bacteria to survive in the host. ATP-binding cassette (ABC)-type metal transporters provide a considerable amount of different transition metals for bacterial growth. TroA is a substrate binding protein for uptake of multiple metal ions. However, the function and structure of the TroA homologue from the epidemic Streptococcus suis isolates (SsTroA) have not been characterized.

Methodology/Principal Findings

Here we determined the crystal structure of SsTroA from a highly pathogenic streptococcal toxic shock syndrome (STSS)-causing Streptococcus suis in complex with zinc. Inductively coupled plasma mass spectrometry (ICP-MS) analysis revealed that apo-SsTroA binds Zn2+ and Mn2+. Both metals bind to SsTroA with nanomolar affinity and stabilize the protein against thermal unfolding. Zn2+ and Mn2+ induce distinct conformational changes in SsTroA compared with the apo form as confirmed by both circular dichroism (CD) and nuclear magnetic resonance (NMR) spectra. NMR data also revealed that Zn2+/Mn2+ bind to SsTroA in either the same site or an adjacent region. Finally, we found that the folding of the metal-bound protein is more compact than the corresponding apoprotein.

Conclusions/Significance

Our findings reveal a mechanism for uptake of metal ions in S. suis and this mechanism provides a reasonable explanation as to how SsTroA operates in metal transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号