首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1,2,4-Triazole-3-one prepared from tryptamine was converted to the corresponding carbothioamides by several steps. Their treatment with ethyl bromoacetate or 4-chlorophenacyl bromide produced the corresponding 5-oxo-1,3-thiazolidine or 3-(4-chlorophenyl)-1,3-thiazole derivatives. Acetohydrazide derivative that was obtained starting from tryptamine, was converted to the corresponding Schiff basis and sulfonamide by the treatment with suitable aldehydes and benzensulphonyl chloride, respectively. 2-[(4-Amino-5-thioxo-4,5-dihydro-1H-1,2,4-triazole-3-yl)methyl]-4-[2-(1H-indole-3-yl)ethyl]-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one was synthesized starting from hydrazide via the formation of the corresponding 1,3,4-oxadiazole compound, while the other bitriazole compounds were obtained by intramolecular cyclisation of carbothioamides in basic media. The treatment of 1,2,4-triazole or 1,3,4-oxadiazole compound with several amines generated the corresponding Mannich bases. Ethyl (2-amino-1,3-thiazole-4-yl)acetate was converted to the corresponding 1,3,4-oxadiazole derivative, arylidenehydrazides, 1,2,4-triazole-3-one and 5-oxo-1,3-oxazolidine derivatives by several steps. The structural assignments of new compounds were based on their elemental analysis and spectral (FT IR, 1H NMR, 13C NMR and LC-MS) data. The antimicrobial, antilipase and antiurease activity studies revealed that some of the synthesized compounds showed antimicrobial, antilipase and/or antiurease activity.  相似文献   

2.
Abstract

(2R,5S)-5-Amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (8) and (2R,5R)-5-amino-2-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,2,4-triazine-3(2H)-one (9) have been synthesized via a multi-step procedure from 6-azauridine. (2R,5S)-4-Amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (11) and (2R,5R)-4-amino-1-[2-(hydroxymethyl)-1,3-oxathiolan-5-y1]-1,3,5-triazine-2(1H)-one (12), and the fluorosubstituted 3-deazanucleosides (19–24) have been synthesized by the transglycosylation of (2R,5S)-1-{2-[[(tert-butyldiphenylsilyl) oxy]methyl]-1,3-oxathiolan-5-y1} cytosine (2) with silylated 5-azacytosine and the corresponding silylated fluorosubstituted 3-deazacytosines, respectively, in the presence of trimethylsilyl trifluoromethanesulfonate as the catalyst in anhydrous dichloroethane, followed by deprotection of the blocking groups. These compounds were tested in vitro for cytotoxicity against L1210, B16F10, and CCRF-CEM tumor cell lines and for antiviral activity against HIV-1 and HBV.  相似文献   

3.
In the present study we have synthesized (4-nitrophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanones, (2-bromophenyl)-[2-(substituted phenyl)-benzoimidazol-1-yl]-methanone analogues (1–14) and evaluated them for their antimicrobial and antiviral potential. The results of antimicrobial screening indicated that none of the synthesized compounds were effective against the tested bacterial strains. Compounds 3, 11, 13 and compounds 5, 11, 12 were found to be active against Aspergillus niger and Candida albicans respectively, and may be further developed as antifungal agents. Furthermore, evaluation against a panel of different viruses pointed out the selective activity of compounds 5 and 6 against vaccinia virus and Coxsackie virus B4.  相似文献   

4.
Antimicrobial resistance which is increasing at an alarming rate is a severe public health issue worldwide. Hence, the development of novel antibiotics is an urgent need as microbes have developed resistance against available antibiotics. In search of novel antimicrobial agents, a convenient route for the preparation of substituted 3-(1-phenyl-3-(p-tolyl)-1H-pyrazol-4-yl)-1-(2-phenyl-5-(pyridin-3-yl)-1,3,4-oxadiazol-3(2H)-yl)prop-2-en-1-ones ( 6a – 6o ) has been adopted by using pyridine-3-carbohydrazide and various aromatic aldehydes. The newly synthesized compounds were characterized by using various spectral techniques, for example, IR, 1H NMR, 13C NMR, and mass spectroscopy. Synthesized hybrids were studied for in vitro antimicrobial potency against various bacterial and fungal strains. Antibacterial results revealed that compounds 6e, 6h, 6i, 6l , and 6m were found to be most active against bacterial strains as they showed minimum inhibitory concentration (MIC) value of 62.5 μg/mL while compounds 6d, 6e , and 6h showed MIC value of 200 μg/mL against Candida albicans. The quantum parameters that relate to the bioavailability of the compounds were computed, followed by docking with different bacterial and fungal targets like sortase A, dihydrofolate reductase, thymidylate kinase, gyrase B, sterol 14-alpha demethylase. The experimental and computational results are in good agreement.  相似文献   

5.
In this work, some N-(9-Ethyl-9H-carbazole-3-yl)-2-(phenoxy)acetamide derivatives were synthesised and evaluated for their antimicrobial activity and cytotoxicity. The structural elucidation of the compounds was performed by IR, 1H-NMR, 13C-NMR and FAB+-MS spectral data and elemental analyses. The title compounds were obtained by reacting 2-chloro-N-(9-ethyl-9H-carbazole-3-yl)acetamide with some substituted phenols. The synthesised compounds were investigated for their antibacterial and antifungal activities against Micrococcus luteus, Bacillus subtilis, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Listeria monocytogenes and Candida albicans. The compounds N-(9-Ethyl-9H-carbazole-3-yl)-2-(4-ethylphenoxy)acetamide (2c) and N-(9-Ethyl-9H-carbazole-3-yl)-2-(quinolin-8-yloxy)acetamide (2n) showed notable antimicrobial activity. The compounds were also studied for their cytotoxic effects using MTT assay, and it was seen that 2n had the lowest cytotoxic activity against NIH/3T3 cells.  相似文献   

6.
In attempt to make significant pharmacologically active molecule, we report here the synthesis and in vitro antimicrobial and antitubercular activity of various series of 3-(3-pyridyl)-5-(4-nitrophenyl)-4-(N-substituted-1,3-benzothiazol-2-amino)-4H-1,2,4-triazole. The antimicrobial activity of title compounds were examined against two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa), and three fungi (Candida albicans, Aspergillus niger, Aspergillus clavatus) using the broth microdilution method and antitubercular activity H37Rv using Lowenstein-Jensen agar method.  相似文献   

7.
In continuation of our efforts to develop new compounds with antimicrobial properties we describe design, synthesis, molecular docking study and evaluation of antimicrobial activity of seventeen novel 2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-arylidene-1,3-thiazolidin-4-ones. All compounds showed antibacterial activity against eight Gram positive and Gram negative bacterial species. Twelve out of seventeen compounds were more potent than streptomycin and all compounds exhibited higher potency than ampicillin. Compounds were also tested against three resistant bacterial strains: MRSA, P. aeruginosa and E. coli. The best antibacterial potential against ATCC and resistant strains was observed for compound 8 (2-{[5-(adamantan-1-yl)-1,3,4-thiadiazol-2-yl]-imino}-5-(4-nitrobenzylidene)-1,3thiazolidin-4-one). The most sensitive bacterium appeared to be S. typhimirium, followed by B. cereus while L. monocitogenes and M. flavus were the most resistant. Compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited antifungal activity better than the reference drugs bifonazole and ketokonazole (3-115 times). It was found that compound 8 appeared again to be the most potent. Molecular docking studies on E. coli MurB, MurA as well as C. albicans CYP 51 and dihydrofolate reductase were used for the prediction of mechanism of antibacterial and antifungal activities confirming the experimental results.  相似文献   

8.
In an effort to establish new candidates with improved antimicrobial activities we report here the synthesis and in vitro biological evaluation of various series of compounds (5a-j) and (7a-j) which were evaluated against two Gram positive (S. aureus, B. subtilis), two Gram negative (S. typhosa, E. coli) strains and a yeast-like fungi (C. albicans) using the micro-dilution procedure. Among the synthesized compounds 2-(cyclohexyl amino)-4-(3,4-dimethoxy phenyl ethyl thioureido)-6-(2-chloro phenyl ureido) s-triazine (7e) and 2-(cyclohexyl amino)-4-(3,4-dimethoxy phenyl ethyl thioureido)-6-(4-chloro phenyl ureido) s-triazine (7g) proved to be effective with MIC (0.019 mg ML?1) against S. typhosa & E. coli respectively.  相似文献   

9.
Brain homogenates from young rats were assayed for their ability to synthesize cerebrosides from radioactive UDP-galactose or UDP-glucose and ceramide. A comparison of galactose transfer with ceramides made from different 2-hydroxy acids showed that the shortest one tested (C7) was by far the best acceptor, while the poorest contained 18 carbon atoms; longer fatty acids were better than CIS. Glucosyltransferase, on the other hand, showed rather little chain length specificity or discrimination against hydroxy acid ceramides. Synthetic compounds analogous in structure to ceramides were tested as inhibitors of the sugar transferases. Some were found to act as sugar acceptors themselves, particularly amides of DL-erythro-1- phenyl-2-amino-1,3-propanediol. Some amides were good inhibitors of glucosyltransferase, particularly decanoyl norephedrine, decanoyl threo-1-phenyl-2-amino-1,3-propanediol and decenoyl phenylalaninol. The secondary amine analogous to the first of these, N-decyl norephedrine, was also very effective. No strong inhibitors of galactosyl transferase were found, although octanoyl D-threo-p-nitrophenyla- minopropanediol showed promise (42% inhibition at 0.3 mM). Octanoyl phenylalaninol was nearly as good an inhibitor; the inhibition appeared only after a lag period. It is suggested that the glucosyltransferase inhibitors might he useful in therapy of Gaucher's disease, by reducing the degradative load normally falling on glucocerebrosidase.  相似文献   

10.
To provide an in-depth insight into the molecular basis of spontaneous tautomerism in DNA and RNA base pairs, a hybrid Monte Carlo (MC)–quantum chemical (QC) methodology is implemented to map two-dimensional potential energy surfaces along the reaction coordinates of solvent-assisted proton transfer processes in guanosine and its analog acyclovir in aqueous solution. The solvent effects were simulated by explicit inclusion of water molecules that model the relevant part of the first hydration shell around the solute. The position of these water molecules was estimated by carrying out a classical Metropolis Monte Carlo simulation of dilute water solutions of the guanosine (Gs) and acyclovir (ACV) and subsequently analyzing solute–solvent intermolecular interactions in the statistically-independent MC-generated configurations. The solvent-assisted proton transfer processes were further investigated using two different ab initio MP2 quantum chemical approaches. In the first one, potential energy surfaces of the ‘bare’ finite solute–solvent clusters containing Gs/ACV and four water molecules (MP2/6-31+G(d,p) level) were explored, while within the second approach, these clusters were embedded in ‘bulk’ solvent treated as polarizable continuum (C-PCM/MP2/6-31+G(d,p) level of theory). It was found that in the gas phase and in water solution, the most stable tautomer for guanosine and acyclovir is the 1H-2-amino-6-oxo form followed by the 2-amino-6-(sZ)-hydroxy form. The energy barriers of the water-assisted proton transfer reaction in guanosine and in acyclovir are found to be very similar – 11.74 kcal mol?1 for guanosine and 11.16 kcal mol?1 for acyclovir, and the respective rate constants (k = 1.5?×?101 s?1, guanosine and k = 4.09?×?101 s?1, acyclovir), are sufficiently large to generate the 2-amino-6-(sZ)-hydroxy tautomer. The analysis of the reaction profiles in both compounds shows that the proton transfer processes occur through the asynchronous concerted mechanism.  相似文献   

11.
Novel 1-[[4-(4-bromophenyl)-5-(2-furyl)-4H-1,2,4-triazole-3-yl]mercaptoacetyl]-4-alkyl/aryl-3-thiosemicarbazides (5–12) were synthesized by the reaction of 4-(4-bromophenyl)-5-(2-furyl)-4H-1,2,4-triazole-3-ylmercaptoacetylhydrazide (4) with substituted isothiocyanates. Cyclodehydration of thiosemicarbazides with concentrated sulfuric acid yielded 2-[4-(4-bromophenyl)-5-(2-furyl)-4H-1,2,4-triazole-3-yl]mercaptomethyl-5-alkyl/arylamino-1,3, 4-thiadiazoles (13–17). The new compounds were evaluated for in vitro antifungal activity using the microdilution method. The tested compounds showed varying degrees of activity against Microsporum gypseum NCPF-580, Microsporum canis, Trichophyton mentagrophytes, Trichophyton rubrum, and Candida albicans ATCC 10231 (MIC 8–4 μg/mL).  相似文献   

12.
Abstract

A number of 6-substituted 7-[(2-hydroxyethoxy)methyl]pyrrolo[2,3-d]pyrimidine and 7-[(1,3-dihydroxy-2-propoxy)methyl]pyrrolo[2,3-d]pyrimidine derivatives related to the nucleoside antibiotics toyocamycin and sangivamycin were prepared and tested for their biological activity. Treatment of 2-amino-5-bromo-3,4-dicyanopyrrole (2) with triethylorthoformate, followed by alkylation via the sodium salt method with either 2-(acetoxyethoxy)methyl bromide or (1,3-diacetoxy-2-propoxy)methyl bromide, furnished the corresponding N-substituted pyrroles 3a and 3b. These compounds were then smoothly converted to the requisite deprotected 4-amino-6-bromopyrrolo[2,3-d]-pyrimidine-5-carbonitriles 5a and 5b (toyocamycin analogs) by methanolic ammonia. The 6-amino-derivatives were obtained by a displacement of the bromo group with liquid ammonia. Conventional functional group transformations involving the 5-cyano group furnished the 5-carboxamide (sangivamycin) and 5-thioamide analogs. Compounds substituted at the 7-position with a ribosyl moiety were active against human cytomegalovirus (HCMV) at micromolar concentrations, but the apparent activity was not selective. The 7-ribosyl compounds also had no activity against human immunodeficiency virus (HIV), though they were all cytotoxic. The new compounds were also evaluated against HCMV, herpes simplex virus type I (HSV-1), HIV, and also for their ability to inhibit the growth of L1210 murine leukemic cells in vitro. None of these compounds with (2-hydroxyethoxy)methyl substituents or 7-(1,3-dihydroxy-2-propoxy)methyl substituent at N-7 showed significant cytotoxicity toward L1210, or toward uninfected human foreskin fibroblasts (HFF cells), and KB cells. Nor were they cytotoxic in human lines CEM or MT2. Only compound 4a was found to be active against HCMV, having an IC50 of 32 μM.  相似文献   

13.
With the appearance of the antifungal resistance, novel antifungal agents need to be identified. In this context new 2,5-disubstituted tetrazole derivatives containing benzothiazole, benzoxazole or phenylsulfonyl moiety were synthesized by N-alkylation of aryltetrazole with 2-[(3-chloropropyl)sulfanyl]-1,3-benzothiazole or 2-[(3-chloropropyl)sulfanyl]-1,3-benzoxazole and Michael-type addition of aryltetrazole to phenyl vinyl sulfone. The chemical structures of the synthesized compounds were confirmed by means of 1H NMR, 13C NMR, IR and HRMS spectral data. The compounds were tested against the moulds: Fusarium sambucinum, Fusarium oxysporum, Colletotrichum coccodes, Aspergillus niger, and the yeast Candida albicans. The results showed that among the moulds only C. coccodes was significantly sensitive to all the structures examined. All the tetrazole derivatives acted at the same level against C. albicans and demonstrated a high cell growth inhibition (97–99%) at the concentrations ranging from 16 to 0.0313 μg/mL. The mode of action of 2-({3-[5-(4-chlorophenyl)-2H-tetrazol-2-yl]propyl}sulfanyl)-1,3-benzoxazole (5c) and 2-({3-[5-(2-chlorophenyl)-2H-tetrazol-2-yl]propyl}sulfanyl)-1,3-benzoxazole (5d) was established by verifying fungal growth in the presence of osmotic protector-sorbitol. The effect of compound 5c or 5d combined with Fluconazole was determined using the checkerboard method. The calculated fractional inhibitory concentration index (FIC) indicated antagonism (FIC >1). Additionally, survival experiments with lepidopteran Galleria mellonella treated with compounds 5c and 5d were performed and demonstrated the lack of toxicity of these compounds.  相似文献   

14.
A novel series of 2-(5-methyl-1,3-diphenyl-1H-pyrazol-4-yl)-5-phenyl-1,3,4-oxadiazoles 7(am) were synthesized either by cyclization of N′-benzoyl-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 4a using POCl3 at 120 °C or by oxidative cyclization of hydrazones derived from various arylaldehyde and (E)-N′-benzylidene-5-methyl-1,3-diphenyl-1H-pyrazole-4-carbohydrazide 5(ad) using chloramine-T as oxidant. Newly synthesized compounds were characterized by analytical and spectral (IR, 1H NMR, 13C NMR and LC–MS) methods. The synthesized compounds were evaluated for their antimicrobial activity and were compared with standard drugs. The compounds demonstrated potent to weak antimicrobial activity. Among the synthesized compounds, compound 7m emerged as an effective antimicrobial agent, while compounds 7d, 7f, 7i and 7l showed good to moderate activity. The minimum inhibitory concentration of the compounds was in the range of 20–50 μg mL−1 against bacteria and 25–55 μg mL−1 against fungi. The title compounds represent a novel class of potent antimicrobial agents.  相似文献   

15.
In this study, new 3-[(1(2H)-phthalazinone-2-yl(methyl/ethyl]-4-aryl-1,2,4-triazole-5-thione and 2-[[1(2H)-phthalazinone-2-yl]methyl/ethyl]-5-arylamino-1,3,4-thiadiazole derivatives were synthesized. Antimicrobial properties of the title compounds were investigated against two Gram (+) bacteria (S. aureus, B. subtilis), two Gram ( ? ) bacteria (P. aeruginosa, E. coli) and two yeast-like fungi (C. albicans and C. parapsilosis) using the broth microdilution method. Generally the compounds were found to be active against B. subtilis and the fungi. Derivatives carrying a 1,3,4-thiadiazole ring generally showed higher antimicrobial activity against B. subtilis and the fungi when compared to other synthesized compounds.  相似文献   

16.
Cytotoxic and antimicrobial agents structurally based on quinazolinone, benzofuran and imidazole pharmacophores, have been designed and synthesized. Spectral (IR, 1H‐NMR) and elemental analysis data established the structures of these novel 3‐[1‐(1‐benzofuran‐2‐yl)‐2‐(4‐oxoquinazolin‐3(4H)‐yl)ethyl]‐1‐methyl‐1H‐imidazol‐3‐ium chloride hybrid derivatives. All the synthesized compounds were evaluated for in vitro cytotoxicity and antimicrobial activities. Cytotoxic evaluation using MTT assay revealed that compounds 12c , 12g and 12i exhibited significant cytotoxicity with IC50 values 1, 1, and 0.57 μm on this cell line, respectively. Biological activity of the synthesized compounds as antibacterial agent were also evaluated against three Gram‐negative (Escherichia coli, Pseudomonas aeruginosa and Salmonella typhi), three Gram‐positive (Staphylococcus aureus, Bacillus subtilis and Listeria monocitogenes) and one yeast‐like fungi (Candida albicans) strains. All compounds 12a  –  12i showed slightly higher activity against Gram‐positive bacteria than the Gram‐negative one. Among the nine new compounds screened, 3‐[1‐(5‐bromo‐1‐benzofuran‐2‐yl)‐2‐(6‐chloro‐4‐oxoquinazolin‐3(4H)‐yl)ethyl]‐1‐methyl‐1H‐imidazol‐3‐ium chloride ( 12e ) has pronounced higher antimicrobial activity against all tested strains. These results demonstrated potential importance of molecular hybridization in the development of new lead molecules with major cytotoxicity and antimicrobial activity.  相似文献   

17.
The in vitro antibacterial and antifungal activities of the compounds synthesised from some 1,2,3,5-tetrahalogeno benzenes in presence of sodium piperidide and sodium pyrrolidide (2,6-dipiperidino-1,4-dihalogenobenzenes; 2,6-dipyrrolidino-1,4-dibromobenzene; 2,4,6-tripyrrolidino chlorobenzene; and 1,3-dipyrrolidino benzene) were investigated. The in vitro antimicrobial activities were screened against the standard strains: Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 6633 as Gram positive, Yersinia enterocolitica ATCC 1501, Escherichia coli ATCC 11230 and Klebsiella pneumoniae as Gram negative, and Candida albicans as yeast-like fungus. Compounds (3, 5, 6, 7) inhibited the growth of all the test strains at MIC values of 32–512 μg/ml. None of the four compounds (1, 2, 4, 8) studied showed antimicrobial activity against any of the test strains within the MIC range 0.25–512 μg/ml.  相似文献   

18.
Antimicrobial activity of 2-(2-hydroxyphenyl)-5-R5-1H-benzimidazoles, 2-(2-hydroxy-5-R5′-phenyl)-1H-benzimidazoles and their FeIII, CuII, AgI, ZnII and HgII nitrate complexes was tested towardStaphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella flexneri, andProteus mirabilis. Antifungal activity was tested againstCandida albicans. Benzimidazole benzene ring substituents increase the antimicrobial activity, phenol ring substituents decrease it. The ligands show an antibacterial effect against onlyS. aureus whereas AgI and HgII complexes of the ligands have a higher activity with respect to the other complexes to all the bacteria. On the other hand, FeIII complexes show a considerable activity againstS. aureus andS. epidermidis.  相似文献   

19.
Tuberculosis is a leading infectious disease that has infected one-third of the world's population and is more prevalent among people belonging to developing countries such as India and China. In the present study, a series of substituted oxymethylene-cyclo-1,3-diones was synthesized and screened for anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv (M. tuberculosis). The compounds were synthesized by condensation of 1,3-cyclicdione, substituted phenols/ alcohols and triethyl orthoformate. The synthesized compounds were screened for anti-tuberculosis activity against M.tuberculosis H37Rv using Middlebrook 7H9 broth assay. Results demonstrated that among the synthesized library of molecules, two compounds 2-(2-hydroxyphenoxymethylene)-5,5-dimethylcyclohexane-1,3-dione and 5,5-dimethyl-2-(2-trifluoromethylphenoxymethylene)cyclohexane-1,3-dione were found to be most active against M. tuberculosis (MICs of 1.25 μg/mL−1). The MICs of 2-(2,4-difluoro-phenoxymethylene)-5,5-dimethylcyclohexane-1,3-dione and 2-(2-bromophenoxymethylene)-5,5-dimethylcyclohexane-1,3-dione were found to be 5 and 10 μg mL−1, respectively. Data from the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay showed that all the four most active compounds did not exhibit cytotoxicity against human cell lines. Molecular docking studies revealed that the most active compound targets mycobacterial InhA enzyme. In summary, the present study demonstrates the methodology for the synthesis of oxymethylene-cyclo-1,3-diones and identified two potential anti-tuberculosis compounds.  相似文献   

20.
A series of novel 1-benzyl-2-butyl-4-chloroimidazole embodied 4-azafluorenone hybrids, designed via molecular hybridization approach, were synthesized in very good yields using one pot condensation of 1-benzyl-2-butyl-4-chloroimidazole-5-carboxaldehyde, 1,3-indanedione, aryl/heteroaryl methyl ketones and ammonium acetate. All the synthetic derivatives were fully characterized by spectral data and evaluated for antimicrobial activity by disc diffusion method against selected bacteria and fungal strains. Among the 15 new compounds screened, 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(furan-2-yl)-5H-indeno[1,2-b]pyridin-5-one(10k) has pronounced activity with higher zone of inhibition (ZoI) against Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Aspergillus flavus and Candida albicans. Also 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(dibenzo[b,d]thiophen-2-yl)-5H-indeno [1,2-b]pyridin-5-one (10n) and 4-(1-benzyl-2-butyl-4-chloro-1H-imidazol-5-yl)-2-(3-tosyl-3H-inden-1-yl)-5H-indeno[1,2-b]pyridin-5-one (10o) showed selective higher inhibitory activity against Aspergillus flavus and Candida albicans. The results demonstrated potential importance of molecular hybridization in the development of 10k as potential antimicrobial agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号