首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stable fluorescent holo-β-allophycocyanin (holo-ApcB) was produced by metabolically engineered Escherichia coli. The E. coli cells harbored two plasmids for expression of five genes that were involved in the holo-ApcB production. Response surface methodology was employed to investigate the individual and interactive effects of four variables, i.e., initial pH of culture medium, IPTG concentration, post-induction temperature, and induction start time, on holo-ApcB production by E. coli. The experimental results showed that the IPTG concentration, postinduction temperature, and induction start time had significant individual effects on holo-ApcB production. A significant interactive effect was also found between the initial pH of culture and induction start time. The maximum holo-ApcB production of 45.3 mg/L was predicted under the following optimized culture conditions: a postinduction temperature of 28.4°C, initial pH of culture of 7.3, IPTG concentration of 1.1 mM, and postinduction time of 66 min. Holo-ApcB production under the optimized culture conditions increased 5.8-fold, compared with that under the nonoptimized conditions. Response surface methodology proved to be a valuable tool for optimization of holo-ApcB production by metabolically engineered E. coli.  相似文献   

2.
Acrylic acid and propionic acid are important chemicals requiring affordable, renewable production solutions. Here, we metabolically engineered Escherichia coli with genes encoding components of the 3-hydroxypropionate/4-hydroxybutyrate cycle from Metallosphaera sedula for conversion of glucose to acrylic and propionic acids. To construct an acrylic acid-producing pathway in E. coli, heterologous expression of malonyl-CoA reductase (MCR), malonate semialdehyde reductase (MSR), 3-hydroxypropionyl-CoA synthetase (3HPCS), and 3-hydroxypropionyl-CoA dehydratase (3HPCD) from M. sedula was accompanied by overexpression of succinyl-CoA synthetase (SCS) from E. coli. The engineered strain produced 13.28 ± 0.12 mg/L of acrylic acid. To construct a propionic acid-producing pathway, the same five genes were expressed, with the addition of M. sedula acryloyl-CoA reductase (ACR). The engineered strain produced 1430 ± 30 mg/L of propionic acid. This approach can be expanded to synthesize many important organic chemicals, creating new opportunities for the production of chemicals by carbon dioxide fixation.  相似文献   

3.
Short branched-chain acyl-CoAs are important building blocks for a wide variety of pharmaceutically valuable natural products. Escherichia coli has been used as a heterologous host for the production of a variety of natural compounds for many years. In the current study, we engineered synthesis of isobutyryl-CoA and isovaleryl-CoA from glucose in E. coli by integration of the branched-chain α-keto acid dehydrogenase complex from Streptomyces avermitilis. In the presence of the chloramphenicol acetyltransferase (cat) gene, chloramphenicol was converted to both chloramphenicol-3-isobutyrate and chloramphenicol-3-isovalerate by the recombinant E. coli strains, which suggested successful synthesis of isobutyryl-CoA and isovaleryl-CoA. Furthermore, we improved the α-keto acid precursor supply by overexpressing the alsS gene from Bacillus subtilis and the ilvC and ilvD genes from E. coli and thus enhanced the synthesis of short branched-chain acyl-CoAs. By feeding 25 mg/L chloramphenicol, 2.96?±?0.06 mg/L chloramphenicol-3-isobutyrate and 3.94?±?0.06 mg/L chloramphenicol-3-isovalerate were generated by the engineered E. coli strain, which indicated efficient biosynthesis of short branched-chain acyl-CoAs. HPLC analysis showed that the most efficient E. coli strain produced 80.77?±?3.83 nmol/g wet weight isovaleryl-CoA. To our knowledge, this is the first report of production of short branched-chain acyl-CoAs in E. coli and opens a way to biosynthesize various valuable natural compounds based on these special building blocks from renewable carbon sources.  相似文献   

4.
Benzoic acid (BA) is an important platform aromatic compound in chemical industry and is widely used as food preservatives in its salt forms. Yet, current manufacture of BA is dependent on petrochemical processes under harsh conditions. Here we report the de novo production of BA from glucose using metabolically engineered Escherichia coli strains harboring a plant-like β-oxidation pathway or a newly designed synthetic pathway. First, three different natural BA biosynthetic pathways originated from plants and one synthetically designed pathway were systemically assessed for BA production from glucose by in silico flux response analyses. The selected plant-like β-oxidation pathway and the synthetic pathway were separately established in E. coli by expressing the genes encoding the necessary enzymes and screened heterologous enzymes under optimal plasmid configurations. BA production was further optimized by applying several metabolic engineering strategies to the engineered E. coli strains harboring each metabolic pathway, which included enhancement of the precursor availability, removal of competitive reactions, transporter engineering, and reduction of byproduct formation. Lastly, fed-batch fermentations of the final engineered strain harboring the β-oxidation pathway and the strain harboring the synthetic pathway were conducted, which resulted in the production of 2.37 ± 0.02 g/L and 181.0 ± 5.8 mg/L of BA from glucose, respectively; the former being the highest titer reported by microbial fermentation. The metabolic engineering strategies developed here will be useful for the production of related aromatics of high industrial interest.  相似文献   

5.
Succinic acid is an important platform chemical that has broad applications and is been listed as one of the top twelve bio-based chemicals produced from biomass by the US Department of Energy. The metabolic role of Escherichia coli formate dehydrogenase-O (fdoH) under anaerobic conditions in relation to succinic acid production remained largely unspecified. Herein we report, what are to our knowledge, the first metabolic fdoH gene knockout that have enhanced succinate production using glucose and glycerol substrates in E. coli. Using the most recent E. coli reconstruction iJO1366, we engineered its host metabolism to enhance the anaerobic succinate production by deleting the fdoH gene, which blocked H+ conduction across the mutant cell membrane for the enhanced succinate production. The engineered mutant strain BMS4 showed succinate production of 2.05 g l?1 (41.2-fold in 7 days) from glycerol and .39 g l?1 (6.2-fold in 1 day) from glucose. This work revealed that a single deletion of the fdoH gene is sufficient to increase succinate production in E. coli from both glucose and glycerol substrates.  相似文献   

6.
A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L ‐valine tolerance, was metabolically engineered for the production of L ‐valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L ‐valine, available for enhanced L ‐valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBNmut genes encoding feedback‐resistant acetohydroxy acid synthase (AHAS) I and the L ‐valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid‐based overexpression. The global regulator Lrp and L ‐valine exporter YgaZH were also amplified by plasmid‐based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBNmut, ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L ‐valine by fed‐batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L ‐valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K‐12, which have so far been the most efficient L ‐valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Bioeng. 2011; 108:1140–1147. © 2010 Wiley Periodicals, Inc.  相似文献   

7.

Objectives

To evaluate the combination of a culture medium employing glucoamylase-mediated glucose reléase from a gluco-polysaccharide and an E. coli strain engineered in its glucose transport system for improving plasmid DNA (pDNA) production.

Results

The production of pDNA was tested using E. coli DH5α grown in shake-flasks and the recently developed VH33 Δ(recA deoR)-engineered strain, which utilizes glucose more efficiently than wild type strains. Three glucoamylase concentrations for releasing glucose from the polysaccharide carbon source were used: 1, 2 and 3 U l?1. Both strains reached similar cell densities ranging from 5 to 8.8 g l?1 under the different conditions. The highest pDNA yields on biomass (YpDNA/X) for both strains were obtained when 3 U enzyme l?1were used. Under these conditions, 35 ± 3 mgof pDNA l?1 were produced by DH5α after 24 h of culture. Under the same conditions, the engineered strain produced 66 ± 1 mgpDNAl?1 after 20 h. pDNA supercoiled fractionswere close to 80 % for both strains.

Conclusions

The pDNA concentration achieved by the engineered E. coli was 89 % higher than that of DH5α. The combination of the engineered strain and enzyme-controlled glucose release is an attractive alternative for pDNA production in shake-flasks.
  相似文献   

8.
Converting lignocellulosics into biofuels remains a promising route for biofuel production. To facilitate strain development for specificity and productivity of cellulosic biofuel production, a user friendly Escherichia coli host was engineered to produce isobutanol, a drop-in biofuel candidate, from cellobiose. A beta-glucosidase was expressed extracellularly by either excretion into the media, or anchoring to the cell membrane. The excretion system allowed for E. coli to grow with cellobiose as a sole carbon source at rates comparable to those with glucose. The system was then combined with isobutanol production genes in three different configurations to determine whether gene arrangement affected isobutanol production. The most productive strain converted cellobiose to isobutanol in titers of 7.64?±?0.19 g/L with a productivity of 0.16 g/L/h. These results demonstrate that efficient cellobiose degradation and isobutanol production can be achieved by a single organism, and provide insight for optimization of strains for future use in a consolidated bioprocessing system for renewable production of isobutanol.  相似文献   

9.
Converting renewable feedstocks to aromatic compounds using engineered microbes offers a robust approach for sustainable, environment‐friendly, and cost‐effective production of these value‐added products without the reliance on petroleum. In this study, rationally designed E. coli–E. coli co‐culture systems were established for converting glycerol to 3‐hydroxybenzoic acid (3HB). Specifically, the 3HB pathway was modularized and accommodated by two metabolically engineered E. coli strains. The co‐culture biosynthesis was optimized by using different cultivation temperatures, varying the inoculum ratio between the co‐culture strains, recruitment of a key pathway intermediate transporter, strengthening the critical pathway enzyme expression, and adjusting the timing for inducing pathway gene expression. Compared with the E. coli mono‐culture, the optimized co‐culture showed 5.3‐fold improvement for 3HB biosynthesis. This study demonstrated the applicability of modular co‐culture engineering for addressing the challenges of aromatic compound biosynthesis.  相似文献   

10.
The biological production of 3-hydroxypropionic acid (3-HP) has attracted significant attention because of its industrial importance. The low titer, yield and productivity, all of which are related directly or indirectly to the toxicity of 3-HP, have limited the commercial production of 3-HP. The aim of this study was to identify and select a 3-HP tolerant Escherichia coli strain among nine strains reported to produce various organic acids efficiently at high titer. When transformed with heterologous glycerol dehydratase, reactivase and aldehyde dehydrogenase, all nine E. coli strains produced 3-HP from glycerol but the level of 3-HP production, protein expression and activities of the important enzymes differed significantly according to the strain. Two E. coli strains, W3110 and W, showed higher levels of growth than the others in the presence of 25 g/L 3-HP. In the glycerol fed-batch bioreactor experiments, the recombinant E. coli W produced a high level of 3-HP at 460 ± 10 mM (41.5 ± 1.1 g/L) in 48 h with a yield of 31 % and a productivity of 0.86 ± 0.05 g/L h. In contrast, the recombinant E. coli W3110 produced only 180 ± 8.5 mM 3-HP (15.3 ± 0.8 g/L) in 48 h with a yield and productivity of 26 % and 0.36 ± 0.02 g/L h, respectively. This shows that the tolerance to and the production of 3-HP differ significantly among the well-known, similar strains of E. coli. The titer and productivity obtained with E. coli W were the highest reported thus far for the biological production of 3-HP from glycerol by E. coli.  相似文献   

11.
Although successful production of fatty alcohols in metabolically engineered Escherichia coli with heterologous expression of fatty acyl-CoA reductase has been reported, low biosynthetic efficiency is still a hurdle to be overcome. In this study, we examined the characteristics of two fatty acyl-CoA reductases encoded by Maqu_2220 and Maqu_2507 genes from Marinobacter aquaeolei VT8 on fatty alcohol production in E. coli. Fatty alcohols with diversified carbon chain length were obtained by co-expressing Maqu_2220 with different carbon chain length-specific acyl-ACP thioesterases. Both fatty acyl-CoA reductases displayed broad substrate specificities for C12–C18 fatty acyl chains in vivo. The optimized mutant strain of E. coli carrying the modified tesA gene and fadD gene from E. coli and Maqu_2220 gene from Marinobacter aquaeolei VT8 produced fatty alcohols at a remarkable level of 1.725 g/L under the fermentation condition.  相似文献   

12.
Farnesol (FOH) production has been carried out in metabolically engineered Escherichia coli. FOH is formed through the depyrophosphorylation of farnesyl pyrophosphate (FPP), which is synthesized from isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by FPP synthase. In order to increase FPP synthesis, E. coli was metabolically engineered to overexpress ispA and to utilize the foreign mevalonate (MVA) pathway for the efficient synthesis of IPP and DMAPP. Two‐phase culture using a decane overlay of the culture broth was applied to reduce volatile loss of FOH produced during culture and to extract FOH from the culture broth. A FOH production of 135.5 mg/L was obtained from the recombinant E. coli harboring the pTispA and pSNA plasmids for ispA overexpression and MVA pathway utilization, respectively. It is interesting to observe that a large amount of FOH could be produced from E. coli without FOH synthase by the augmentation of FPP synthesis. Introduction of the exogenous MVA pathway enabled the dramatic production of FOH by E. coli while no detectable FOH production was observed in the endogenous MEP pathway‐only control. Biotechnol. Bioeng. 2010;107: 421–429. © 2010 Wiley Periodicals, Inc.  相似文献   

13.
14.
This study provided a new method which applied a selected l-lysine-inducible promoter for evolving lysine industrial strains of E. coli. According to the intracellular levels of the enhanced green fluorescent protein (EGFP) whose expression was controlled by the promoter, 186 strains were preliminarily selected using fluorescence-activated cell sorting from a 10-million-mutant library generated from a l-lysine high-producing E. coli strain. By subsequent multiple parameter evaluation of the 186 selected strains according to the concentration and the yield of lysine, the productivity per unit of cell in 96-deep-well blocks, two mutants MU-1 and MU-2 were obtained. They produced 136.51 ± 1.55 and 133.2 9 ± 1.42 g/L of lysine, respectively, in 5-L jars. Compared with the lysine concentration and the yield of the original strain, those of strain MU-1 improved by 21.00 and 9.05 %, respectively, and those of strain MU-2 improved by 18.14 and 10.41 %, respectively. The mutant selection and evaluation system newly established in our study should be useful for continuous improvement of the current E. coli strains in the lysine industry.  相似文献   

15.
Phloroglucinol is a valuable chemical which has been successfully produced by metabolically engineered Escherichia coli. However, the low productivity remains a bottleneck for large-scale application and cost-effective production. In the present work, we cloned the key biosynthetic gene, phlD (a type III polyketide synthase), into a bacterial expression vector to produce phloroglucinol in E. coli and developed different strategies to re-engineer the recombinant strain for robust synthesis of phloroglucinol. Overexpression of E. coli marA (multiple antibiotic resistance) gene enhanced phloroglucinol resistance and elevated phloroglucinol production to 0.27 g/g dry cell weight. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) level through coordinated expression of four acetyl-CoA carboxylase (ACCase) subunits increased phloroglucinol production to around 0.27 g/g dry cell weight. Furthermore, the coexpression of ACCase and marA caused another marked improvement in phloroglucinol production 0.45 g/g dry cell weight, that is, 3.3-fold to the original strain. Under fed-batch conditions, this finally engineered strain accumulated phloroglucinol up to 3.8 g/L in the culture 12 h after induction, corresponding to a volumetric productivity of 0.32 g/L/h. This result was the highest phloroglucinol production to date and showed promising to make the bioprocess economically feasible.  相似文献   

16.
丙二酸是一种重要的有机二元羧酸,其应用价值遍及化工、医药、食品等领域。本文以大肠杆菌为底盘细胞,过表达了ppc、aspC、panD、pa0132、yneI和pyc基因,成功构建了丙二酸合成重组菌株大肠杆菌BL21(TPP)。该菌株在摇瓶发酵条件下,丙二酸产量达到0.61 g/L。在5 L发酵罐水平,采用间歇补料的方式丙二酸的积累量达3.32 g/L。本研究应用了融合蛋白技术,将ppc和aspC、pa0132和yneI分别进行融合表达,构建了工程菌BL21(SCR)。在摇瓶发酵水平,该菌株丙二酸的积累量达到了0.83 g/L,较出发菌株BL21(TPP)提高了36%。在5 L发酵罐中,工程菌BL21(SCR)的丙二酸产量最高达5.61 g/L,较出发菌株BL21(TPP)提高了69%。本研究实现了丙二酸在大肠杆菌中的生物合成,为构建丙二酸合成的细胞工厂提供了理论依据和技术基础,同时也对其他二元羧酸的生物合成具有启发和指导意义。  相似文献   

17.
Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid‐based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L ‐aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed‐batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli. Biotechnol. Bioeng. 2013; 110: 2025–2034. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
We have previously reported in vivo biosynthesis of polylactic acid (PLA) and poly(3-hydroxybutyrate-co-lactate) [P(3HB-co-LA)] employing metabolically engineered Escherichia coli strains by the introduction of evolved Clostridium propionicum propionyl-CoA transferase (Pct Cp ) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Using this in vivo PLA biosynthesis system, we presently report the biosynthesis of PHAs containing 2-hydroxybutyrate (2HB) monomer by direct fermentation of a metabolically engineered E. coli strain. The recombinant E. coli ldhA mutant XLdh strain expressing PhaC1 Ps6-19 and Pct Cp was developed and cultured in a chemically defined medium containing 20 g/L of glucose and varying concentrations of 2HB and 3HB. PHAs consisting of 2HB, 3HB, and a small fraction of lactate were synthesized. Their monomer compositions were dependent on the concentrations of 2HB and 3HB added to the culture medium. Even though the ldhA gene was completely deleted in the chromosome of E. coli, up to 6 mol% of lactate was found to be incorporated into the polymer depending on the culture condition. In order to synthesize PHAs containing 2HB monomer without feeding 2HB into the culture medium, a heterologous metabolic pathway for the generation of 2HB from glucose was constructed via the citramalate pathway, in which 2-ketobutyrate is synthesized directly from pyruvate and acetyl-CoA. Introduction of the Lactococcus lactis subsp. lactis Il1403 2HB dehydrogenase gene (panE) into E. coli allowed in vivo conversion of 2-ketobutyrate to 2HB. The metabolically engineered E. coli XLdh strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene successfully produced PHAs consisting of 2HB, 3HB, and a small fraction of lactate by varying the 3HB concentration in the culture medium. As the 3HB concentration in the medium increased the 3HB monomer fraction in the polymer, the polymer content increased. When Ralstonia eutropha phaAB genes were additionally expressed in this recombinant E. coli XLdh strain, P(2HB-co-3HB-co-LA) having small amounts of 2HB and LA monomers could also be produced from glucose as a sole carbon source. The metabolic engineering strategy reported here should be useful for the production of PHAs containing 2HB monomer.  相似文献   

19.
Heparosan is a crucial-polysaccharide precursor for the chemoenzymatic synthesis of heparin, a widely used anticoagulant drug. Presently, heparosan is mainly extracted with the potential risk of contamination from Escherichia coli strain K5, a pathogenic bacterium causing urinary tract infection. Here, a nonpathogenic probiotic, E. coli strain Nissle 1917 (EcN), was metabolically engineered to carry multiple copies of the 19-kb kps locus and produce heparosan to 9.1 g/L in fed-batch fermentation. Chromosome evolution driven by antibiotics was employed to amplify the kps locus, which governed the synthesis and export of heparosan from EcN at 21 mg L−1 OD−1. The average copy number of kps locus increased from 1 to 24 copies per cell, which produced up to 104 mg L-1 OD−1 of heparosan in the shaking flask cultures of engineered strains. The following in-frame deletion of recA stabilized the recombinant duplicates of chromosomal kps locus and the productivity of heparosan in continuous culture for at least 56 generations. Fed-batch fermentation of the engineered strain EcN8 was carried out to bring the yield of heparosan up to 9.1 g/L. Heparosan from the fermentation culture was further purified at a 75% overall recovery. The structure of purified heparosan was characterized and further modified by N-sulfotransferase with 3′-phosphoadenosine-5′-phosphosulfate as the sulfo-donor. The analysis of element composition showed that heparosan was N-sulfated by over 80%. These results indicated that duplicating large DNA cassettes up to 19-kb, followed by high-cell-density fermentation, was promising in the large-scale preparation of chemicals and could be adapted to engineer other industrial-interest bacteria metabolically.  相似文献   

20.
3‐amino‐benzoic acid (3AB) is an important building block molecule for production of a wide range of important compounds such as natural products with various biological activities. In the present study, we established a microbial biosynthetic system for de novo 3AB production from the simple substrate glucose. First, the active 3AB biosynthetic pathway was reconstituted in the bacterium Escherichia coli, which resulted in the production of 1.5 mg/L 3AB. In an effort to improve the production, an E. coliE. coli co‐culture system was engineered to modularize the biosynthetic pathway between an upstream strain and an downstream strain. Specifically, the upstream biosynthetic module was contained in a fixed E. coli strain, whereas a series of E. coli strains were engineered to accommodate the downstream biosynthetic module and screened for optimal production performance. The best co‐culture system was found to improve 3AB production by 15 fold, compared to the mono‐culture approach. Further engineering of the co‐culture system resulted in biosynthesis of 48 mg/L 3AB. Our results demonstrate co‐culture engineering can be a powerful new approach in the broad field of metabolic engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号