首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
The binding interaction between bovine serum albumin (BSA) and enalapril (ENPL) at the imitated physiological conditions (pH = 7.4) was investigated using UV–vis absorption spectroscopy (UV–vis), fluorescence emission spectroscopy (FES), synchronous fluorescence spectroscopy (SFS), Fourier transform infrared spectroscopy (FT‐IR), circular dichroism (CD) and molecular docking methods. It can be deduced from the experimental results from the steady‐state fluorescence spectroscopic titration that the intrinsic BSA fluorescence quenching mechanism induced by ENPL is static quenching, based on the decrease in the BSA quenching constants in the presence of ENPL with increase in temperature and BSA quenching rates >1010 L mol?1 sec?1. This result indicates that the ENPL–BSA complex is formed through an intermolecular interaction of ENPL with BSA. The main bonding forces for interaction of BSA and ENPL are van der Waal's forces and hydrogen bonding interaction based on negative values of Gibbs free energy change (ΔG 0), enthalpic change (ΔH 0) and entropic change (ΔS 0). The binding of ENPL with BSA is an enthalpy‐driven process due to |ΔH °| > |T ΔS °| in the binding process. The results of competitive binding experiments and molecular docking confirm that ENPL binds in BSA sub‐domain IIA (site I) and results in a slight change in BSA conformation, but BSA still retains its α‐helical secondary structure.  相似文献   

3.
Eriocitrin is a flavanone glycoside, which exists in lemon or lime citrus fruits. It possesses antioxidant, anticancer, and anti‐allergy activities. In order to investigate the pharmacokinetics and pharmacological mechanisms of eriocitrin in vivo, the interaction between eriocitrin and bovine serum albumin (BSA) was studied under the simulated physiological conditions by multispectroscopic and molecular docking methods. The results well indicated that eriocitrin and BSA formed a new eriocitrin‐BSA complex because of intermolecular interactions, which was demonstrated by the results of ultraviolet‐visible (UV‐vis) absorption spectra. The intrinsic fluorescence of BSA was quenched by eriocitrin, and static quenching was the quenching mechanism. The number of binding sites (n) and binding constant (Kb) at 310 K were 1.22 and 2.84 × 106 L mol?1, respectively. The values of thermodynamic parameters revealed that the binding process was spontaneous, and the main forces were the hydrophobic interaction. The binding distance between eriocitrin and BSA was 3.43 nm. In addition, eriocitrin changed the conformation of BSA, which was proved by synchronous fluorescence and circular dichroism (CD) spectra. The results of site marker competitive experiments suggested that eriocitrin was more likely to be inserted into the subdomain IIA (site I), which was further certified by molecular docking studies.  相似文献   

4.
The intermolecular interaction of fosinopril, an angiotensin converting enzyme inhibitor with bovine serum albumin (BSA), has been investigated in physiological buffer (pH 7.4) by multi‐spectroscopic methods and molecular docking technique. The results obtained from fluorescence and UV absorption spectroscopy revealed that the fluorescence quenching mechanism of BSA induced by fosinopril was mediated by the combined dynamic and static quenching, and the static quenching was dominant in this system. The binding constant, Kb, value was found to lie between 2.69 × 103 and 9.55 × 103 M?1 at experimental temperatures (293, 298, 303, and 308 K), implying the low or intermediate binding affinity between fosinopril and BSA. Competitive binding experiments with site markers (phenylbutazone and diazepam) suggested that fosinopril preferentially bound to the site I in sub‐domain IIA on BSA, as evidenced by molecular docking analysis. The negative sign for enthalpy change (ΔH0) and entropy change (ΔS0) indicated that van der Waals force and hydrogen bonds played important roles in the fosinopril‐BSA interaction, and 8‐anilino‐1‐naphthalenesulfonate binding assay experiments offered evidence of the involvements of hydrophobic interactions. Moreover, spectroscopic results (synchronous fluorescence, 3‐dimensional fluorescence, and Fourier transform infrared spectroscopy) indicated a slight conformational change in BSA upon fosinopril interaction.  相似文献   

5.
Molecular interaction of atenolol, a selective β1 receptor antagonist with the major carrier protein, bovine serum albumin (BSA), was investigated under imitated physiological conditions (pH 7.4) by means of fluorescence spectroscopy, UV absorption spectroscopy, Fourier transform infrared spectroscopy (FT-IR), and molecular modeling studies. The steady-state fluorescence spectra manifested that static type, due to formation of the atenolol-BSA complex, was the dominant mechanism for fluorescence quenching. The characteristic information about the binding interaction of atenolol with BSA in terms of binding constant (Kb) were determined by the UV–vis absorption titration, and were found to be in the order of 103 M?1 at different temperatures, indicating the existence of a weak binding in this system. Thermodynamic analysis revealed that the binding process was primarily mediated by van der Waals force and hydrogen bonds due to the negative sign for enthalpy change (ΔH0), entropy change (ΔS0). The molecular docking results elucidated that atenolol preferred binding on the site II of BSA according to the findings observed in competitive binding experiments. Moreover, via alterations in synchronous fluorescence, three-dimensional fluorescence and FT-IR spectral properties, it was concluded that atenolol could arouse slight configurational and micro-environmental changes of BSA.  相似文献   

6.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Thymol is the main monoterpene phenol present in the essential oils which is used in the food industry as flavoring and preservative agent. In this study, the interaction of thymol with the concentration range of 1 to 6 μM and bovine serum albumin (BSA) at fixed concentration of 1 μM was investigated by fluorescence, UV‐vis, and molecular docking methods under physiological‐like condition. Fluorescence experiments were performed at 5 different temperatures, and the results showed that the fluorescence quenching of BSA by thymol was because of a static quenching mechanism. The obtained binding parameters, K, were in the order of 104 M?1, and the binding number, n, was approximately equal to unity indicating that there is 1 binding site for thymol on BSA. Calculated thermodynamic parameters for enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) showed that the reaction was spontaneous and hydrophobic interactions were the main forces in the binding of thymol to BSA. The results of UV‐vis spectroscopy and Arrhenius' theory showed the complex formation in the interaction of thymol and BSA. Negligible conformational changes in BSA by thymol were observed in fluorescence experiments, and the same results were also obtained from UV‐vis studies. Results of molecular docking indicated that the subdomain IA of BSA was the binding site for thymol.  相似文献   

8.
In the present study, the interaction of Pyrogallol (PG) with human serum albumin (HSA) was investigated by UV, fluorescence, Circular dichroism (CD), and molecular docking methods. The results of fluorescence experiments showed that the quenching of intrinsic fluorescence of HSA by PG was due to a static quenching. The calculated binding constants (K) for PG-HSA at different temperatures were in the order of 104?M ?1, and the corresponding numbers of binding sites, n were approximately equal to unity. The thermodynamic parameters, ΔH and ΔS were calculated to be negative, which indicated that the interaction of PG with HSA was driven mainly by van der Waals forces and hydrogen bonds. The negative value was obtained for ΔG showed that the reaction was spontaneous. In addition, the effect of PG on the secondary structure of HSA was analyzed by performing UV–vis, synchronous fluorescence, and CD experiments. The results indicated that PG induced conformational changes in the structure of HSA. According to Förster no-radiation energy transfer theory, the binding distance of HSA to PG was calculated to be 1.93?nm. The results of molecular docking calculations clarified the binding mode and the binding sites which were in good agreement with the results of experiments.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
The interaction between N‐acetyl cysteine (NAC) and bovine serum albumin (BSA) was investigated by UV–vis, fluorescence spectroscopy, and molecular docking methods. Fluorescence study at three different temperatures indicated that the fluorescence intensity of BSA was reduced upon the addition of NAC by the static quenching mechanism. Binding constant (Kb) and the number of binding sites (n) were determined. The binding constant for the interaction of NAC and BSA was in the order of 103 M?1, and the number of binding sites was obtained to be equal to 1. Enthalpy (ΔH), entropy (ΔS), and Gibb's free energy (ΔG) as thermodynamic values were also achieved by van't Hoff equation. Hydrogen bonding and van der Waals force were the major intermolecular forces in the interaction process and it was spontaneous. Finally, the binding mode and the binding sites were clarified using molecular docking which were in good agreement with the results of spectroscopy experiments. © 2015 Wiley Periodicals, Inc. Biopolymers 103: 638–645, 2015.  相似文献   

10.
The effect of quercetin flavonoid (QUE), on the binding interaction of antihypertensive drug, amiloride (AMI) with bovine serum albumin (BSA) was investigated in this study. Spectroscopic methods such as steady‐state, synchronous, three‐dimensional fluorescence, and circular dichroism spectroscopy were employed to study the interaction. Fluorescence data were analyzed using the Stern–Volmer equation and a static quenching process was found to be involved in the formation of AMI–BSA and QUE–BSA complexes and were in good agreement with the thermodynamic study. The thermodynamic parameters illustrated that the process is spontaneous and enthalpy driven. Hydrophobicity is acting as the primary force in the binding interaction. Fluorescence spectral data were resolved using a multivariate curve resolution‐alternating least squares method (MCR–ALS). Site marker and molecular docking studies confirmed the binding site of AMI on BSA, i.e. site II. The binding distance between amino acid of BSA and AMI was calculated and found to be 2.18 nm which indicated that energy transfer has occurred from an amino acid of BSA to AMI. The binding affinity of AMI to BSA was found to be reduced in the presence of QUE, which may lead to the poor distribution of AMI at the desired site.  相似文献   

11.
This study explores the binding interaction of thionine (TH) with bovine serum albumin (BSA) under physiological conditions (pH 7.40) using absorption, emission, synchronous emission, circular dichroism (CD) and three‐dimensional (3D) emission spectral studies. The results of emission titration experiments revealed that TH strongly quenches the intrinsic emission of BSA via a static quenching mechanism. The apparent binding constant (K) and number of binding sites (n) were calculated as 2.09 × 105 dm3/mol and n~1, respectively. The negative free energy change value for the BSA–TH system suggested that the binding interaction was spontaneous and energetically favourable. The results from absorption, synchronous emission, CD and 3D emission spectral studies demonstrated that TH induces changes in the microenvironment and secondary structure in BSA. Site marker competitive binding experiments revealed that the binding site of TH was located in subdomain IIA (Sudlow site I) of BSA. The molecular docking study further substantiates Sudlow site I as the preferable binding site of TH in BSA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Interaction studies of bisphenol analogues; biphenol-A (BPA), bisphenol-B (BPB), and bisphenol-F (BPF) with bovine serum albumin (BSA) were performed using multi-spectroscopic and molecular docking studies at the protein level. The mechanism of binding of bisphenols with BSA was dynamic in nature. SDS refolding experiments demonstrated no stabilization of BSA structure denatured by BPB, however, BSA denatured by BPA and BPF was found to get stabilized. Also, CD spectra and molecular docking studies revealed that BPB bound more strongly and induced more conformational changes in BSA in comparison to BPA. Hence, this study throws light on the replacement of BPA by its analogues and whether the replacement is associated with a possible risk, raising a doubt that perhaps BPB is not a good substitute of BPA.  相似文献   

13.
In the present investigation, the protein‐binding properties of naphthyl‐based hydroxamic acids (HAs), N‐1‐naphthyllaurohydroxamic acid ( 1 ) and N‐1‐naphthyl‐p‐methylbenzohydroxamic acid ( 2 ) were studied using bovine serum albumin (BSA) and UV–visible spectroscopy, fluorescence spectroscopy, diffuse reflectance spectroscopy–Fourier transform infrared (DRS–FTIR), circular dichroism (CD), and cyclic voltammetry along with computational approaches, i.e. molecular docking. Alteration in the antioxidant activities of compound 1 and compound 2 during interaction with BSA was also studied. From the fluorescence studies, thermodynamic parameters such as Gibb's free energy (ΔG), entropy change (ΔS) and enthalpy change (ΔH) were calculated at five different temperatures (viz., 298, 303, 308, 313 or 318 K) for the HAs–BSA interaction. The results suggested that the binding process was enthalpy driven with dominating hydrogen bonds and van der Waals’ interactions for both compounds. Warfarin (WF) and ibuprofen (IB) were used for competitive site‐specific marker binding interaction and revealed that compound 1 and compound 2 were located in subdomain IIA (Sudlow's site I) on the BSA molecule. Conclusions based on above‐applied techniques signify that various non‐covalent forces were involved during the HAs–BSA interaction. Therefore the resulted HAs–BSA interaction manifested its effect in transportation, distribution and metabolism for the drug in the blood circulation system, therefore establishing HAs as a drug‐like molecule.  相似文献   

14.
Carbendazim is a benzimidazole fungicide used to control the fungal invasion. However, its exposure might lead to potential health problems. The present study evaluates the interaction of carbendazim (CAR) with human serum albumin (HSA) which is an important drug carrier protein and plays a very crucial role in the transportation of small molecules. A number of biophysical techniques were employed to investigate the binding of CAR with HSA. The increased UV-absorption of HSA on titrating with CAR suggests the formation of HSA–CAR complex and it could be due to the exposure of aromatic residues. The fluorescence study confirmed that CAR quenches the fluorescence of HSA and showed the static mode of quenching. CAR (50 µM) quenches around 56.14% of the HSA fluorescence. The quenching constant, binding constant, number of binding site and free energy change was calculated by fluorescence quenching experiment. Competitive displacement assay showed Sudlow’s site I as the primary binding site of CAR on HSA. The synchronous fluorescence study revealed the perturbation in the microenvironment around tyrosine and tryptophan residues upon binding of CAR to HSA. The circular dichroism results suggested that the binding of CAR to HSA altered its secondary structure. Molecular docking experiment demonstrated the binding of CAR to Sudlow’s site I of HSA. Docking studies suggested that the hydrogen bonding, van der Waals and pi-alkyl are playing role in the interaction of CAR with HSA. The study confirmed the conformational changes within HSA upon binding of CAR.  相似文献   

15.
Interaction between ulipristal acetate (UPA) and human serum albumin (HSA) was investigated in simulated physiological environment using multi-spectroscopic and computational methods. Fluorescence experiments showed that the quenching mechanism was static quenching, which was confirmed by the time-resolved fluorescence. Binding constants (Ka) were found to be 1?×?105 L mol?1, and fluorescence data showed one binding site. Thermodynamic constants suggested the binding process was mainly controlled by electrostatic interactions. Results from the competition experiments indicated that UPA bound to site I of HSA. Fourier transform infrared spectra, circular dichroism spectra, synchronous fluorescence spectra, and 3D fluorescence indicated that UPA can induce conformation change in the HSA. The content of α-helix and β-sheet increased, while β-turn decreased. Hydrophobicity around the tryptophan residues declined, whereas its polarity increased. Molecular docking results were consistent with the experimental results. Results suggested that UPA located at the hydrophobic cavity site I of HSA, and hydrophobic force played the key role in the binding process. Moreover, molecular dynamics simulation was performed to determine the stability of free HSA and HSA-UPA system. Results indicated that UPA can stabilize HSA to a certain degree and enhance the flexibility of residues around site I.

Communicated by Ramaswamy H. Sarma  相似文献   


16.
In this paper, the binding properties of teicoplanin and vancomycin to bovine serum albumin (BSA) were investigated using fluorescence quenching, synchronous fluorescence, Fourier transform infrared (FTIR), circular dichroism (CD) and UV–vis spectroscopic techniques and molecular docking under simulative physiological conditions. The results obtained from fluorescence quenching data revealed that the drug–BSA interaction altered the conformational structure of BSA. Meanwhile, the 3D fluorescence, CD, FTIR and UV–vis data demonstrated that the conformation of BSA was slightly altered in the presence of teicoplanin and vancomycin, with different reduced α‐helical contents. The binding distances for the drug–BSA system were provided by the efficiency of fluorescence resonance energy transfer (FRET). Furthermore, the thermodynamic analysis implied that hydrogen bond and van der Waals' forces were the main interaction for the drug–BSA systems, which agreed well with the results from the molecular modeling study. The results obtained herein will be of biological significance in future toxicological and pharmacological investigation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The binding interactions between megestrol acetate (MA) and bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) were investigated by fluorescence spectroscopy, circular dichroism and molecular modeling. The results revealed that the intrinsic fluorescence of BSA was quenched by MA due to formation of the MA–BSA complex, which was rationalized in terms of a static quenching procedure. The binding constant (Kb) and number of binding sites (n) for MA binding to BSA were 2.8 × 105 L/mol at 310 K and about 1 respectively. However, the binding of MA with BSA was a spontaneous process due to the negative ∆G0 in the binding process. The enthalpy change (∆H0) and entropy change (∆S0) were – 124.0 kJ/mol and –295.6 J/mol per K, respectively, indicating that the major interaction forces in the binding process of MA with BSA were van der Waals forces and hydrogen bonding. Based on the results of spectroscopic and molecular docking experiments, it can be deduced that MA inserts into the hydrophobic pocket located in subdomain IIIA (site II) of BSA. The binding of MA to BSA leads to a slight change in conformation of BSA but the BSA retained its secondary structure, while conformation of the MA has significant change after forming MA–BSA complex, suggesting that flexibility of the MA molecule supports the binding interaction of BSA with MA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
The interaction of fisetholz with bovine serum albumin (BSA) and human serum albumin (HSA) was investigated by multi-spectroscopic, cyclic voltammetric, and molecular docking technique. The results revealed that there was a static quenching of BSA/HSA induced by fisetholz. The binding constants (Ka) and binding sites (n) were calculated at different temperatures (293, 303, and 311?K). The enthalpy change (ΔH) were calculated to be –17.20?kJ mol?1 (BSA) and –18.28?kJ mol?1 (HSA) and the entropy change (ΔS) were calculated to be 35.41?J mol?1 (BSA) and 24.02?J mol?1 (HSA), respectively, which indicated that the interaction between fisetholz and BSA/HSA was mainly by electrostatic attraction. Based on displacement experiments using site probes, indomethacin and ibuprofen, the binding site of fisetholz to BSA/HSA was identified as sub-domain IIIA, which was further confirmed by molecular docking method. There was little effect of K+, Ca2+, Cu2+, Zn2+, and Fe3+ on fisetholz-BSA or fisetholz-HSA complex. The spectra of synchronous fluorescence, circular dichroism (CD) and Fourier transform infrared (FT-IR) all showed that fisetholz binding to BSA/HSA leads to secondary structures change of the two serum albumins. According to the Förster non-radiation energy transfer theory, the binding distance between fisetholz and BSA/HSA was 2.94/4.68?nm. The cyclic voltammetry as a supporting tool also indicated that fisetholz interacted with protein.

Communicated by Ramaswamy H. Sarma  相似文献   


19.
Human serum albumin (HSA) is the major transport protein affording endogenous and exogenous substances in plasma. It can affect the behavior and efficacy of chemicals in vivo through the binding interaction. AKR (3-O-α-l-arabinofuranosyl-kaempferol-7-O-α-l-rhamnopyranoside) is a flavonoid diglycoside with modulation of estrogen receptors (ERs). Herein, we investigated the binding interaction between AKR and HSA by multiple fluorescence spectroscopy and molecular modeling. As a result, AKR specifically binds in site I of HSA through hydrogen bonds, van der Waals force, and electrostatic interaction. The formation of AKR–HSA complex in binding process is spontaneously exothermic and leads to the static fluorescence quenching through affecting the microenvironment around the fluorophores. The complex also affects the backbone of HSA and makes AKR access to fluorophores. Molecular modeling gives the visualization of the interaction between AKR and HSA as well as ERs. The affinity of AKR with HSA is higher than the competitive site marker Warfarin. In addition, docking studies reveal the binding interaction of AKR with ERs through hydrogen bonds, van der Waals force, hydrophobic, and electrostatic interactions. And AKR is more favorable to ERβ. These results unravel the binding interaction of AKR with HSA and mechanism as an ERs modulator.  相似文献   

20.
Qing Wang  Jiawei He  Jin Yan  Di Wu  Hui Li 《Luminescence》2015,30(2):240-246
Lochnericine (LOC) is a component of Voacanga africana, which is a type of traditional medical food in Africa widely used for treating diseases. In this article, the interaction between LOC and bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Furthermore, Fourier transform infrared (FTIR), Raman and circular dichroism (CD) were used to investigate the structural changes of BSA. The experimental results consistently indicated that LOC changed the secondary structure of BSA. Three structure‐similar components were used to study the interference experiments. The molecular modeling results showed that LOC could bind within not only sites I and II, but also bind the cavity of subdomain IB. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号