首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
The homeotic genes are instrumental in establishing segment-specific characteristics. In Drosophila embryos there is ample evidence that the homeotic genes are involved in establishing the differences in the pattern of sense organs between segments. The chordotonal organs are compound sense organs made up of several stretch receptive sensilla. A set of serially homologous chordotonal organs, lch3 in the 1st thoracic segment, dch3 in the 2nd and 3rd thoracic segments and lch5 in abdominal segments 1 to 7, is composed of different numbers of sensilla with different positions and orientations. Here we examine this set of sense organs and a companion set, vchA/B and veh1, in the wild type and mutants for Sexcombs reduced, Antennapedia, Ultrabithorax, and abdominal-A, using immunostaining. Mutant phenotypes indicate that Ultrabithorax and abdominal-A in particular influence the formation of these sense organs. Differential expression of abdominal-A and Ultrabithorax within compartments of individual parasegments can precisely modulate the types of sense organs that will arise from a segment.  相似文献   

5.
Proprioception is the ability to sense the motion, or position, of body parts by responding to stimuli arising within the body. In fruitflies and other insects proprioception is provided by specialized sensory organs termed chordotonal organs (ChOs). Like many other organs in Drosophila, ChOs develop twice during the life cycle of the fly. First, the larval ChOs develop during embryogenesis. Then, the adult ChOs start to develop in the larval imaginal discs and continue to differentiate during metamorphosis. The development of larval ChOs during embryogenesis has been studied extensively. The centerpiece of each ChO is a sensory unit composed of a neuron and a scolopale cell. The sensory unit is stretched between two types of accessory cells that attach to the cuticle via specialized epidermal attachment cells. When a fly larva moves, the relative displacement of the epidermal attachment cells leads to stretching of the sensory unit and consequent opening of specific transient receptor potential vanilloid (TRPV) channels at the outer segment of the dendrite. The elicited signal is then transferred to the locomotor central pattern generator circuit in the central nervous system. Multiple ChOs have been described in the adult fly. These are located near the joints of the adult fly appendages (legs, wings and halters) and in the thorax and abdomen. In addition, several hundreds of ChOs collectively form the Johnston's organ in the adult antenna that transduce acoustic to mechanical energy. In contrast to the extensive knowledge about the development of ChOs in embryonic stages, very little is known about the morphology of these organs during larval stages. Moreover, with the exception of femoral ChOs and Johnston's organ, our knowledge about the development and structure of ChOs in the adult fly is very fragmentary. Here we describe a method for staining and visualizing ChOs in third instar larvae and pupae. This method can be applied together with genetic tools to better characterize the morphology and understand the development of the various ChOs in the fly.  相似文献   

6.
Each side of the abdominal segments of the stick insect Carausius morosus contains a chordotonal organ lying longitudinally in a ventro-lateral position. These ventro-lateral chordotonal organs each possess two nerve cell bodies and two scolopales. There is a single attachment strand to the cuticle.Electrical recordings from the receptors show that they respond in a highly phasic manner to both stretching and subsequent relaxation of the attachment strand. They are sensitive to substrate vibration but are activated by ventilatory movements. The effects of ramp and square wave stimulation are examined. The rôle of the ventro-lateral chordotonal organs as ventilatory receptors is discussed and abdominal chordotonal organs of insects in general are reviewed.The ‘ventral phasic receptors’ of the cockroach are re-examined and shown to be chordotonal organs. They are re-named ‘mid-ventral’ chordotonal organs.  相似文献   

7.
We have examined the pattern of axon growth from the lateral chordotonal (lch5) neurons in the body wall of the Drosophila embryo and identified cellular substrates and choice points involved in early axon pathfinding by these sensory neurons. At the first choice point (TP1), the lch5 growth cones contact the most distal cells of the spiracular branch (SB) of the trachea. The SB provides a substrate along which the axons extend internally to the level of the intersegmental nerve (ISN). In the absence of the SB, the lch5 axons often stall near TP1 or follow aberrant routes towards the CNS. At the second choice point (TP2), the lch5 growth cones make their first contact with other axons and turn ventrally toward the CNS, fasciculating specifically with the motor axons of the ISN.  相似文献   

8.
Carlson  S. D  Hilgers  S. L  Juang  J. L 《Brain Cell Biology》1997,26(6):377-388
Chordotonal organs of Drosophila embryos have become models for studies of developmental biology and molecular genetics due to their consistent segmental placement and mutability. Our first goal was to find the origin and anatomical correlate of the blood–nerve barrier of this PNS proprioreceptor in wild type embryos. The concept of a blood–nerve barrier for the PNS of the Drosophila embryo is new, and the present data are the first in this regard. A second goal was to reveal the ultrastructure of these four-celled stretch receptors, focusing particularly on the ‘core’ of this organ: the bipolar neuron enclosed by a scolopale cell. These latter data have resulted in a graphic reconstruction of the chordotonal organ which reveals how the four consistent cells fit together. At Stage 13 we first observed a clearly recognizable scolopale cell with an enclosed neuron. Surprisingly, an operative blood–nerve barrier, comprised of occlusive pleated-sheet septate junctions, exists at this relatively early stage. A blood–brain barrier is not yet functioning in the CNS during this same stage, as the perineurium is not present until Stage 17. Cross-sectional views of a more mature chordotonal organ show that the neuron’s inner segment has a ‘tongue-in-groove’ formation which fits the dendrite into the scolopale cell. Other newly discovered fine structural features are: hemidesmosomes linking individual scolopale rod bundles to the inner dendrite, and a cap cell matrix bonding with the tip of the ciliary dendrite. Functional aspects of these findings are discussed.  相似文献   

9.
The femoral chordotonal organ (FCO) of Locusta migratoria and Valanga sp. (Orthoptera : Acrididae) is a leg stretch receptor containing scolopophorous sensory neurones embedded in a ligament, which emerges distally from the body of the organ and connects to a distal apodeme. The ligament is pulled when the tibia is flexed. Thus the FCO bridges the femur-tibia joint. The ligament is divided into separate strands, each of which is composed of several or more, long attachment cells. These cells link individual scolopidia to the apodeme. An additional unloading strand connects the body of the FCO to a static point on the femoral integument. Because the strands are inserted along the apodeme in a sequential array, and because the unloading strand holds all the tension on the FCO when the ligament is relaxed (tibia extended), a mechanism for gradual, sequential uptake of tension by the ligament strands exists when the ligament is pulled (tibia flexed). This leads to a range fractionation of stretch-sensitive neurone responses during tibial flexion, and of relaxation-sensitive neurone responses during tibial extension. Observations on the ultrastructural distribution of desmosomes suggest that groups of attachment cells may be functionally connected and may collectively transmit force to specific groups of neurones.  相似文献   

10.
Dettman RW  Turner FR  Hoyle HD  Raff EC 《Genetics》2001,158(1):253-263
We have sought to define the developmental and cellular roles played by differential expression of distinct beta-tubulins. Drosophila beta3-tubulin (beta3) is a structurally divergent isoform transiently expressed during midembryogenesis. Severe beta3 mutations cause larval lethality resulting from failed gut function and consequent starvation. However, mutant larvae also display behavioral abnormalities consistent with defective sensory perception. We identified embryonic beta3 expression in several previously undefined sites, including different types of sensory organs. We conclude that abnormalities in foraging behavior and photoresponsiveness exhibited by prelethal mutant larvae reflect defective beta3 function in the embryo during development of chordotonal and other mechanosensory organs and of Bolwig's organ and nerve. We show that microtubule organization in the cap cells of chordotonal organs is altered in mutant larvae. Thus transient zygotic beta3 expression has permanent consequences for the architecture of the cap cell microtubule cytoskeleton in the larval sensilla, even when beta3 is no longer present. Our data provide a link between the microtubule cytoskeleton in embryogenesis and the behavioral phenotype manifested as defective proprioreception at the larval stage.  相似文献   

11.
Structure and physiology of the locust femoral chordotonal organ   总被引:1,自引:0,他引:1  
The connective chordotonal organs (COs) in the femora of the prothoracic and mesothoracic legs of the locust Schistocerca gregaria are divided into two parts, the proximal and the distal scoloparia. The proximal scoloparium contains about 150 small neurons and is anchored to the femoral cuticle. The distal scoloparium contains about 50 larger neurons and is connected at its proximal end to both the cuticle and the flexor tibiae muscle.Records were made from the distal scoloparium, classifying units by spike size. The tibial position/total activity response curve is ∪-shaped but when a small number of units is selected the responses occur only when the tibia is on one side of its centre position. The tonic responses display considerable hysteresis and a degree of adaptation which varies with the tibial angle. Units with phasic and phasic-tonic responses are common and their responsiveness depends on the range of angles the tibia is moved through. The same units respond strongly to flexor tibiae contraction with the tibia either fixed or free, and so may serve as receptors for tension in that muscle.The CO mediates phasic resistance reflexes in all three extensor tibiae motoneurons and tonic reflexes in the extensor ‘slow’ neuron. It is suggested that the very detailed information furnished by the CO is used in a complex way in the control of the femoral muscles.  相似文献   

12.
The tarso-pretarsal chordotonal organ in the imago of Tineola bisselliella (Lepidoptera .: Tineidae) includes 2 groups of scolopidia. (1) A basal group composed of 2 scolopidia, each with one neuron and one scolopidium with 3 neurons, whose dendrites present a typical structure of cilium; the dendrite becomes dense apically; it is a common characteristic for all the mechanoreceptive dendrites. (2) An apical scolopidium with 3 neurons, whose dendrites have the same size and are covered with a conical cap.The combination of single and triple dendrites is unusual in the limb chordotonal organs. The 2 groups of scolopidia are not in contact. The importance of the support structures and fixation structures is discussed. In the ciliary root region, peculiar desmosomes occur between the dendrite and the scolopale cell. For the apical scolopidium, one attachment cell is seen distally and it appears in close association with the articular membrane.  相似文献   

13.
Small swellings near the base of the radial vein in each fore wing of the green lacewing, Chrysopa carnea, resemble typical insect tympanal organs, but some important differences are apparent. The swellings are bounded dorsally and laterally by thick cuticle and ventrally by thin, membranous cuticle. The ventral membrane is formed by a single, thin sheet of exocuticle with flattened hypodermis internally, but lacks the tracheal component that forms part of the tympanum in the typical insect tympanal organ. The portion of the membrane beneath each swelling is rippled while proximally it is smooth. In contrast to typical insect tympanal organs, the swellings in C. carnea are largely fluid-filled since an unexpanded trachea runs through each organ. A distal and a proximal chordotonal organ composed of typical chordotonal sensory units are associated with each swelling. The distal organ contains from five to seven units while the proximal organ is composed of from 18 to 20 units. Each sensory unit is composed of three readily identifiable cells. Distally, an attachment cell unites with the membrane and is contiguous with the scolopale cell, which surrounds the dendrite of the bipolar neuron. On the basis of the morphological evidence, one would not expect these swellings to function as sound receptors. However, the results of physiological and behavioral experiments, presented elsewhere, show that these organs are receptors for ultrasound.  相似文献   

14.
The pyrophilous Australian “fire-beetle” Merimna atrata approaches forest fires and possesses abdominal infrared (IR) organs. Each round IR organ is centrally innervated by a sensory complex showing two different units: one thermoreceptive multipolar neuron and one mechanosensitive chordotonal organ (CO) consisting of two scolopidia. We investigated the CO and found that the scolopidia are mononematic (the scolopale cap remains below the cuticle) and monodynal (one sensory cell per scolopidium). The dendrites of the scolopidia extend anteriorly and are attached by their caps to the cuticle about in the middle of the absorbing area. Structural features at the site of innervation suggest that the CO measures minute thermal deformations caused by IR absorption. Therefore, an additional photomechanic component which has been described for the IR receptors of pyrophilous jewel beetles of the genus Melanophila can be proposed for the IR organ of Merimna. Because scolopidia can measure displacements in the subnanometer range, the CO may enhance the sensitivity of the IR organ. The sensory complex of the Merimna IR organ shows the same units and similar cuticular modifications as the tympanal organs of some noctuid moths. Therefore, a parallel evolution of insect ears and the Merimna IR organ is discussed.  相似文献   

15.
We investigated the synaptic inputs from the serially homologous pleural, tympanal and wing-hinge chordotonal organs onto a set of identified homologous interneurons (714, 539, 529) in the ventral nerve cord of the grasshopper Schistocerca gregaria. Cobalt backfills show that afferents from all chordotonal organs project into stereotypic tracts in the central nervous system in which intracellular staining reveals the interneurons to have dendritic arborizations. Neuron 714 was found to receive excitatory bilateral synaptic input from all the serial chordotonal organs tested, from the second thoracic segment down to the seventh abdominal segment. Neuron 531, by contrast, only receives input from the chordotonal afferents on the first abdominal segment; those on the axon side are excitatory, while those on the soma side are inhibitory. The pattern of chordotonal input onto neuron 529 is similar to that seen for neuron 714, with the exception that neuron 529 receives no input from the forewing chordotonal organs. The pattern of afferent connectivities onto neurons 714, 531 and 529 differs with respect to those afferents which synapse directly or indirectly with the respective neuron. The synaptic inputs demonstrate a segmental specialization in the chordotonal system and thereby offer an insight into information processing in a modular sensory system.  相似文献   

16.
R Bodmer  S Barbel  S Sheperd  J W Jack  L Y Jan  Y N Jan 《Cell》1987,51(2):293-307
The identities of two types of sensory organs in the body wall of Drosophila, namely the external sensory organs and the chordotonal organs, are under genetic control. Embryonic lethal mutations in the cut gene complex transform the external sensory organs into chordotonal organs. The neurons, as well as the support cells forming the external sensory structures, change their morphological and antigenic characteristics to those of chordotonal organs, providing genetic evidence that these two types of sensory organs are homologous. Similar transformations of external sensory organs are observed in adult mosaic flies. Analysis of mosaic larvae and flies suggests that the cut gene function is required either in or near external sensory organs in order for them to acquire their correct identity.  相似文献   

17.

The location and external anatomy of the CAP organs of Jasus novaehollandiae were examined and found to be similar to those in Homarus gammarus (Laverack, 1978a). Histological examination of the organs showed threads or filaments arising from the internal surface of the spines to run through canals in the cuticle and join with dendrites of CAP sensory cells in the region of the hypodermis. The CAP neuron cell bodies lie in the nearby chordotonal organ strand. It is demonstrated that flexion of the limb causes the articulating membrane to deflect the spines of the sensillae distally. A variety of experimental techniques used to investigate the physiology of the organs reveals why previously reported attempts to record from the receptors failed. Direct stimulation of the sensillae with an analogue of the membrane and summation of many traces revealed phase constant responses at points corresponding to the covering and uncovering of the sensillae.  相似文献   

18.
Two independent methods of comparison, serial homology and phylogenetic character mapping, are employed to investigate the evolutionary origin of the noctuoid moth (Noctuoidea) ear sensory organ. First, neurobiotin and Janus green B staining techniques are used to describe a novel mesothoracic chordotonal organ in the hawkmoth, Manduca sexta, which is shown to be serially homologous to the noctuoid metathoracic tympanal organ. This chordotonal organ comprises a proximal scolopidial region with three bipolar sensory cells, and a long flexible strand (composed of attachment cells) that connects peripherally to an unspecialized membrane ventral to the axillary cord of the fore-wing. Homology to the tympanal chordotonal organ in the Noctuoidea is proposed from anatomical comparisons of the meso- and metathoracic nerve branches and their corresponding peripheral attachment sites. Second, the general structure (noting sensory cell numbers, gross anatomy, and location of peripheral attachment sites) of both meso- and metathoracic organs is surveyed in 23 species representing seven superfamilies of the Lepidoptera. The structure of the wing-hinge chordotonal organ in both thoracic segments was found to be remarkably conserved in all superfamilies of the Macrolepidoptera examined except the Noctuoidea, where fewer than three cells occur in the metathoracic ear (one cell in representatives of the Notodontidae and two cells in those of other families examined), and at the mesothoracic wing-hinge (two cells) in the Notodontidae only. By mapping cell numbers onto current phylogenies of the Macrolepidoptera, we demonstrate that the three-celled wing-hinge chordotonal organ, believed to be a wing proprioceptor, represents the plesiomorphic state from which the tympanal organ in the Noctuoidea evolved. This ’trend toward simplicity’ in the noctuoid ear contrasts an apparent ’trend toward complexity’ in several other insect hearing organs where atympanate homologues have been studied. The advantages to having fewer rather than more cells in the moth ear, which functions primarily to detect the echolocation calls of bats, is discussed. Accepted: 18 June 1999  相似文献   

19.
The temporal and spatial expression pattern of the Drosophila melanogaster alpha 2-tubulin gene (alpha 2) has been investigated by examining the expression of an alpha 2-lacZ fusion gene. When this fusion gene is introduced into the germ line by P-element mediated transformation, expression is only detected in chordotonal organs and testes. Chordotonal organs, which are sensory organs of the peripheral nervous system, express the gene from late embryonic through adult stages in both males and females. Testicular expression occurs from larval through adult stages and is limited to germ-line cells, the primary and secondary spermatocytes and perhaps the early spermatids.  相似文献   

20.
EB1 is a conserved microtubule plus end tracking protein considered to play crucial roles in microtubule organization and the interaction of microtubules with the cell cortex. Despite intense studies carried out in yeast and cultured cells, the role of EB1 in multicellular systems remains to be elucidated. Here, we describe the first genetic study of EB1 in developing animals. We show that one of the multiple Drosophila EB1 homologues, DmEB1, is ubiquitously expressed and has essential functions during development. Hypomorphic DmEB1 mutants show neuromuscular defects, including flightlessness and uncoordinated movement, without any general cell division defects. These defects can be partly explained by the malfunction of the chordotonal mechanosensory organs. In fact, electrophysiological measurements indicated that the auditory chordotonal organs show a reduced response to sound stimuli. The internal organization of the chordotonal organs also is affected in the mutant. Consistently, DmEB1 is enriched in those regions important for the structure and function of the organs. Therefore, DmEB1 plays a crucial role in the functional and structural integrity of the chordotonal mechanosensory organs in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号