首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical modification studies of manganese(III)-containing acid phosphatase [EC 3.1.3.2] were carried out to investigate the contributions of specific amino-acid side-chains to the catalytic activity. Incubation of the enzyme with N-ethylmaleimide at pH 7.0 caused a significant loss of the enzyme activity. The inactivation followed pseudo-first-order kinetics. Double log plots of pseudo-first-order rate constant vs. concentration gave a straight line with a slope of 1.02, suggesting that the reaction of one molecule of reagent per active site is associated with activity loss. The enzyme was protected from inactivation by the presence of molybdate or phosphate ions. Amino acid analyses of the N-ethylmaleimide-modified enzyme showed that the 96%-inactivated enzyme had lost about one histidine and one-half lysine residue per enzyme subunit without any significant decrease in other amino acids, and also demonstrated that loss of catalytic activity occurred in parallel with the loss of histidine residue rather than that of lysine residue. Molybdate ions also protected the enzyme against modification of the histidine residue. The enzyme was inactivated by photooxidation mediated by methylene blue according to pseudo-first-order kinetics. The pH profile of the inactivation rates of the enzyme showed that an amino acid residue having a pKa value of approximately 7.2 was involved in the inactivation. These studies indicate that at least one histidine residue per enzyme subunit participates in the catalytic function of Mn(III)-acid phosphatase.  相似文献   

2.
1. When ribonuclease T1 [EC 3.1.4.8] (0.125% solution) was treated with a 760-fold molar excess of iodoacetamide at pH 8.0 and 37 degrees, about 90% of the original activity was lost in 24 hr. The half-life of the activity was about 8 hr. The binding ability for 3'-GMP was lost simultaneously. Changes were detected only in histidine and the amino-terminal alanine residues upon amino acid analyses of the inactivated protein and its chymotryptic peptides. The inactivation occurred almost in parallel with the loss of two histidine residues in the enzyme. The pH dependences of the rate of inactivation and that of loss of histidine residues were similar and indicated the implication of a histidine residue or residues with pKa 7.5 to 8 in this reaction. 3'-GMP and guanosine showed some protective effect against loss of activity and of histidine residues. The reactivity of histidine residues was also reduced by prior modification of glutamic acid-58 with iodoacetate, of lysine-41 with maleic or cis-aconitic anhydride or 2,4,6-trinitrobenzenesulfonate or of arginine-77 with ninhydrin. 2. Analyses of the chymotryptic peptides from oxidized samples of the iodoacetamide-inactivated enzyme showed that histidine-92 and histidine-40 reacted with iodoacetamide most rapidly and at similar rates, whereas histidine-27 was least reactive. Alkylation of histidine-92 was markedly slowed down when the Glu58-carboxymethylated enzyme was treated with iodoacetamide. On the other hand, alkylation of histidine-40 was slowed down most in the presence of 3'-GMP. These results suggest that histidine-92 and histidine-40 are involved in the catalytic action, probably forming part of the catalytic site and part of the binding site, respectively, and that histidine-27 is partially buried in the enzyme molecule or interacts strongly with some other residue, thus becoming relatively unreactive.  相似文献   

3.
In order to obtain information on the nature of the amino acid residues involved in the activity of ribonuclease U1 [EC 3.1.4.8], various chemical modifications of the enzyme were carried out. RNase U1 was inactivated by reaction with iodoacetate at pH 5.5 with concomitant incorporation of 1 carboxymethyl group per molecule of the enzyme. The residue specifically modified by iodoacetate was identified as one of the glutamic acid residues, as in the case of RNase T1. The enzyme was also inactivated extensively by reaction with iodoacetamide at pH 8.0 with the loss of about one residue each of histidine and lysine. When RNase U1 was treated with a large excess of phenylglyoxal, the enzymatic activity and binding ability toward 3'-GMP were lost, with simultaneous modification of about 1 residue of arginine. The reaction of citraconic anhydride with RNase U1 led to the loss of enzymatic activity and modification of about 1 residue of lysine. The inactivated enzyme, however, retained binding ability toward 3'-GMP. These results indicate that there are marked similarities in the active sites of RNases T1 and U1.  相似文献   

4.
Pyridoxamine (pyridoxine)-5'-phosphate oxidase (EC 1.4.3.5) from rabbit liver is inactivated by diethylpyrocarbonate in an all-or-none fashion with first order kinetics with respect to modifier concentration. The rate of inactivation increases with pH and reflects a group with a pKa of 7.5. Inactivated enzyme is in the holo form with intact FMN. Four histidyls and a cysteinyl residue are modified by excess reagent. The restoration of enzymatic activity by hydroxylamine, the spectrophotometric and colorimetric amino acid analyses, and our previous studies on cysteine modification (Tsuge, H., and McCormick, D.B. (1979) in Flavins and Flavoproteins (Yamano, T., and Yagi, K., eds) Japan Scientific Societies Press, Tokyo, in press) all suggest that inactivation occurs solely by modification of histidine. Analyses by kinetic and statistical methods indicate that three histidines are modified slowly and are not critical for activity, while one histidine is modified nine times more rapidly and accounts for the observed inactivation. Inactivated enzyme shows no significant perturbations in structure, as evidenced by absorption, CD, fluorescence, and gel filtration, but is unable to bind the product, pyridoxal 5'-phosphate. Furthermore, the substrate-competitive inhibitor, pyridoxal 5'-phosphate oxime, protects from inactivation. Hence, diethylpyrocarbonate inactivates this enzyme by modifying a crucial histidyl residue at the substrate/product-binding site.  相似文献   

5.
δ-Aminolevulinic acid dehydratase (EC 4.2.1.24) was obtained in highly purified form from beef liver. Upon photooxidation of the enzyme in the presence of methylene blue as a sensitizer led to a loss of the enzymatic activity according to pseudo-first order kinetics. The pronounced pH dependence (pk value of 6.8) of the photooxidation rate and the results of amino acid analysis suggested that the inactivation was largely due to the modification of the histidine residue. The finding of the enzyme with little activity in the presence of diethylpyrocarbonate was consistent with such a speculation. On the basis of these results, it can be postulated that the histidine residue seems to play an important role in the enzymatic activity of δ-aminolevulinic acid dehydratase.  相似文献   

6.
Critical ionizing groups in Aeromonas neutral protease   总被引:2,自引:0,他引:2  
Aeromonas neutral protease possesses two residues critical to its activity. One has a pKa of 5.5 in both the free enzyme and the enzyme-substrate complex and must be deprotonated for maximal activity. The other, which ionizes at pH 7.1 in the free enzyme and at pH 7.4 in the enzyme-substrate complex, must be protonated for optimal enzyme action. The protease is reversibly inhibited by aminoacyl hydroxamates, peptides containing a phenylalanyl residue, phosphoryl-L-phenylalanylglycylglycine, and by beta-phenylpropionyl-L-phenylalanine. The pH dependence of inhibition by the latter revealed that a residue with a pKa of 5.6 influences inhibitor binding. Compounds containing both a hydroxamido group and a chloroacetyl group are particularly effective in inactivating the enzyme, and inhibition is enhanced by hydrophobic residues. Thus, a 33-fold molar excess of chloroacetyl-N-hydroxy-L-phenylalanyl-L-alanyl-L-alanine amide rapidly inactivated Aeromonas neutral protease. Carbethoxylation experiments resulted in a 90% loss in activity which was fully reversible by hydroxylamine; spectral analysis indicated the involvement of a single histidine residue. Protection against both esterification and carbethoxylation was furnished by the presence of beta-phenylproprionyl-L-phenylalanine. Inactivation experiments suggest that a glutamic or aspartic acid and a histidine residue are responsible for the pKa values revealed by pH dependence studies.  相似文献   

7.
An ultraviolet absorption difference spectrum that is typical of a change in ionization state (pKa 9.7 leads to greater than 11.5) of a tyrosyl residue has been observed on the binding between Streptomyces subtilisin inhibitor (SSI) and subtilisin BPN' [EC 3.4.21.14] at alkaline pH, ionic strength 0.1 M, at 25 degrees C (Inouye, K., Tonomura, B., and Hiromi, K., submitted). When the complex of SSI and subtilisin BPN' is formed at an ionic strength of 0.6 M and pH 9.70, the characteristic features of the protonation of a tyrosyl residue in the difference spectrum are diminished. These results suggest that the pKa-shift of a tyrosyl residue observed at alkaline pH and lower ionic strength results from an electrostatic interaction. Nitration of tyrosyl residues of SSI and of subtilisin BPN' was performed with tetranitromethane (TNM). By measurements of the difference spectra observed on the binding of the tyrosyl-residue-nitrated SSI and the native subtilisin BPN', and on the binding of the native SSI and the tyrosyl-residue-nitrated subtilisin BPN' and alkaline pH, the tyrosyl residue in question was shown to be one out of the five tyrosyl residues of pKa 9.7 of the enzyme. This tyrosyl residue was probably either Tyr 217 or Tyr 104 on the basis of the reactivities of tyrosyl residues of the enzyme with TNM and their locations on the enzyme molecule. Carboxyl groups of SSI were modified by covalently binding glycine methyl ester with the aid of water-soluble carbodiimide, in order to neutralize the negative charges on SSI. In the difference spectrum which was observed on the binding of subtilisin BPN' and the 5.3-carboxyl-group-modified SSI at alkaline pH, the characteristic features of the protonation of a tyrosyl residue were essentially lost, and the difference spectrum is rather similar to that observed on the binding of the native SSI and the enzyme at neutral pH. This phenomenon indicates that the pKa of a tyrosyl residue of the enzyme is shifted upwards by interaction with carboxyl group(s) of SSI on the formation of the enzyme-inhibitor complex.  相似文献   

8.
The milk-clotting activity of Mucor-rennin obtained from Mucor pusillus Lindt, was not changed by the addition of DFP in the reaction mixture. This finding suggested the probable absence of a serine residue at the active center of the enzyme. Sulfhydryl reagents such as Nekelgon, N-ethyl maleimide, PCMB failed to influence the milk-clotting reaction, indicating that a. reactive sulfhydryl group is not required for the enzymatic activity. The activity was inhibited when Mucor-rennin was treated with iodine at pH higher than 5.0. It was shown that 131I2 was incorporated into the enzyme. When Mucor-rennin was photooxidized in the presence of methylene blue, the milk-clotting activity was inactivated. In this case, tyrosine, tryptophan, and histidine residues in the enzyme were oxidized. Among these amino acids, the histidine residue was more rapidly oxidized than other amino acids. A parallel relation was observed between the decrease of the amount of histidine residue and the inactivation of the enzyme. From these results, it is concluded that the histidine residue present in Mucor-rennin has a relation to the active center of this enzyme.  相似文献   

9.
Sarcosine oxidase [sarcosine: oxygen oxidoreductase (demethylating) EC 1.5.3.1] from Corynebacterium contained 8 sulfhydryl groups per mol of enzyme as determined with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) in the presence of 0.2% SDS and by titration with p-chloromercuribenzoate (PMB). Among them, 2 groups were easily modified by iodoacetamide (IAA) and the modification resulted in complete loss of enzymatic activity. The inactivation by IAA followed first-order kinetics with respect to IAA concentration. The presence of acetate, a competitive inhibitor (I), protected the enzyme from inactivation by IAA. However, the protection was only approximately 50%. The enzyme was also inactivated by PMB, but in this case, there was practically no recovery of activity after treatment with thiol compounds. The enzyme was also rapidly inactivated by incubation with diethylpyrocarbonate (DEP). The absorbance change accompanying the inactivation showed that a single histidyl residue was modified by DEP, resulting in a complete loss of enzymatic activity. In the presence of acetate, the enzyme was completely protected from DEP-inactivation. Furthermore, DEP-inactivated enzyme recovered its enzymatic activity on treatment with hydroxylamine. These observations seem to imply that the modified histidine is essential for enzyme activity. In addition, modification by DEP changed the absorption spectrum in the visible region. This strongly suggests that the modified histidyl residue is present in the vicinity of the flavin moiety of the enzyme molecule.  相似文献   

10.
In order to investigate the nature of amino acid residues involved in the active in the active site of a ribonuclease from Aspergillus saitoi, the pH dependence of the rates of inactivation of RNase Ms by photooxidation and modification with diethylpyrocarbonate were studied. (1) RNase Ms was inactivated by illumination in the presence of methylene blue at various pH's. The pH dependence of the rate of photooxidative inactivation of RNase Ms indicated that at least one functional group having pKa 7.2 was involved in the active site. (2) Amino acid analyses of photooxidized RNase Ms at various stages of photooxidative inactivation at pH's 4.0 and 6.0 indicated that one histidine residue was related to the activity of RNase Ms, but that no tryptophan residue was involved in the active site. (3) 2',(3')-AMP prevented the photooxidative inactivation of RNase Ms. The results also indicated the presence of a histidine residue in the active site. (4) Modification of RNase Ms with diethylpyrocarbonate was studied at various pH's. The results indicated that a functional group having pKa 7.1 was involved in the active site of RNase Ms.  相似文献   

11.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

12.
The single tryptophan residue in ribonuclease T1 [EC 3.1.4.8] was selectively oxidized by ozone to N'-formylkynurenine, which was then converted to kynurenine by acid-catalyzed deformylation in the frozen state. The two enzyme derivatives thus formed, NFK- and Kyn-RNase T1, lost enzymatic activity at pH 7.5, at which native RNase T1 most efficiently catalyzes the hydrolysis of RNA. At pH 4.75, the modified enzymes retained a decreased but distinct enzymatic activity toward RNA without alteration of substrate specificity, and Kyn-RNase T1 was four times more active than NFK-RNase T1. The binding of 3'-GMP to these modified enzymes decreased remarkably at pH 5.5, the optimum pH for binding to the intact enzyme. The gamma-carboxyl group of glutamic acid 58 was still reactive to iodoacetic acid after modification of tryptophan 59. The amounts of the carboxymethyl group introduced into NFK- and Kyn-RNase T1 were 0.36 and 0.59 mol, respectively, under conditions such that quantitative esterification of native RNase T1 takes place. CD spectroscopy indicated that the tertiary structure of the molecule was disordered in NFK-RNase T1, but not significantly in Kyn-RNase T1. It is concluded that tryptophan 59 functions in maintaining the active conformation of the protein structure, particularly in constructing the active environment for a functionally important set of groups involved in the binding of the substrate at the active site, although direct participation of in tryptophan the catalytic function of ribonuclease T1 is unlikely.  相似文献   

13.
The variation with pH of kinetic parameters was examined for 3-ketosteroid-delta 1-dehydrogenase from Nocardia corallina. The Vmax/Km profile for 4-androstenedione indicates that activity is lost upon protonation of a cationic acid-type group with a pK value of 7.7. The enzyme was inactivated by diethylpyrocarbonate at pH 7.4 and the inactivation was substantially prevented by androstadienedione. Analyses of reactivation with neutral hydroxylamine, pH variation, and spectral changes of the inactivated enzyme revealed that the inactivation arises from modification of a histidine residue. Studies with [14C]diethylpyrocarbonate provided support for the idea that the 1-2 essential histidine residues are essential for the catalytic activity of the enzyme. Dye-sensitized photooxidation led to 50% inactivation of the enzyme with the decomposition of two histidine residues. This inactivation was also prevented by androstadienedione. Dancyl chloride caused a loss of the enzyme activity. Modifiers of glutamic acid, aspartic acid, cysteine, and lysine did not affect the enzyme activity. Butanedione and phenylglyoxal in the presence of borate rapidly inactivated the enzyme, indicating that arginine residues also have a crucial function in the active site. The data described support the previously proposed mechanism of beta-oxidation of 3-ketosteroid.  相似文献   

14.
1. When ribonuclease T1 [EC 3.1.4.8] was treated with trypsin [EC 3.4.21.4] at pH 7.5 and 37 degrees, activity was lost fairly slowly. At higher temperatures, however, the rate of inactivation was markedly accelerated. The half life of the activity was about 2.5 h at 50 degrees and 1 h at 60 degrees. 3'-GMP and guanosine protected the enzyme significantly from tryptic inactivation. 2. Upon tryptic digestion at 50 degrees, the Lys-Tyr (41-42) and Arg-Val (77-78) bonds were cleaved fairly specifically, yielding two peptide fragments. One was a 36 residue peptide comprizing residues 42 to 77. The other was a 68 residue peptide composed of two peptide chains cross-linked by a disulfide bond between half-cystines -6 and -103, comprizing residues 1 to 41 and 78 to 104. 3. When the trinitrophenylated enzyme, in which the alpha-amino group of alanine-1 and the episolone-amino group of lysine 41 were selectively modified, was treated with trypsin at 37 degrees, the activity was lost fairly rapidly with a half life of about 4 h. In this case, tryptic hydrolysis occurred fairly selectively at the single Arg-Val bond. Thus the enzyme could be inactivated by cleavage of a single peptide bond in the molecule, an indication of the importance of the peptide region involving the single arginine residue at position 77 in the activity of ribonuclease T1.  相似文献   

15.
Dopamine beta-hydroxylase (3,4- dihydroxyphenylethylamine ,ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1) is the terminal enzyme in the biosynthetic pathway of norepinephrine. Chemical modification studies of this enzyme were executed to investigate contributions of specific amino-acid side-chains to catalytic activity. Sulfhydryl reagents were precluded, since no free cysteine residue was detected upon titration of the denatured or native protein with 2-chloromercuri-4-nitrophenol. Incubation of enzyme with diazonium tetrazole caused inactivation of the protein coupled with extensive reaction of lysine and tyrosine residues. Reaction with iodoacetamide resulted in complete loss of enzymatic activity with reaction of approximately three histidine residues; methionine reaction was also observed. Modification of the enzyme using diethylpyrocarbonate resulted in complete inactivation of the enzyme, and analysis of the reacted protein indicated a loss of approx. 1.7 histidine residues per protein monomer with no tyrosine or lysine modification observed. The correlation of activity loss with histidine modification supports the view that this residue participates in the catalytic function of dopamine beta-hydroxylase.  相似文献   

16.
N Carrillo  R H Vallejos 《Biochemistry》1983,22(25):5889-5897
Diethyl pyrocarbonate inhibited diaphorase activity of ferredoxin-NADP+ oxidoreductase with a second-order rate constant of 2 mM-1 X min-1 at pH 7.0 and 20 degrees C, showing a concomitant increase in absorbance at 242 nm due to formation of carbethoxyhistidyl derivatives. Activity could be restored by hydroxylamine, and the pH curve of inactivation indicated the involvement of a residue having a pKa of 6.8. Derivatization of tyrosyl residues was also evident, although with no effect on the diaphorase activity. Both NADP+ and NADPH protected the enzyme against inactivation, suggesting that the modification occurred at or near the nucleotide binding domain. The reductase lost all of its diaphorase activity after about two histidine residues had been blocked by the reagent. In differential-labeling experiments with NADP+ as protective agent, it was shown that diaphorase inactivation resulted from blocking of only one histidyl residue per mole of enzyme. Modified reductase did not bind pyridine nucleotides. Modification of the flavoprotein in the presence of NADP+, i.e., with full preservation of diaphorase activity, resulted in a significant impairment of cytochrome c reductase activity, with a second-order rate constant for inactivation of about 0.5 mM-1 X min-1. Reversal by hydroxylamine and spectroscopic data indicated that this second residue was also a histidine. Ferredoxin afforded only slight protection against this inhibition. Conversely, carbethoxylation of the enzyme did not affect complex formation with the ferrosulfoprotein. Redox titration of the modified reductase with NADPH and with reduced ferredoxin suggested that the second histidine might be located in the electron pathway between FAD and ferredoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The metal content of carboxypeptidase Y was analyzed by the atomic absorption method. After exhaustive dialysis against an EDTA solution, the enzyme showed no loss of activity nor any significant content of metals (Zh,Mg,Ca,Cu,Mn,Ni,Fe, and Co). The activity was, however, rather sensitive to preincubation with various metals. The reactivity of a serine residue of the enzyme was also reevaluated. Diisopropyl fluorophosphate (DFP) and phenylmethanesulfonyl fluoride (PMSF) stoichiometrically and irreversively inhibited the enzyme. The rate of inactivation with DFP was much faster than that for typsin [EC 3.4.21.4] and chymotrypsin [EC 3.4.21.1.], while the rate with PMSF was one-fifteenth of that for chymotrypsin. The pH-dependence of the inactivation by DFP was similar to that of the enzymatic hydrolysis of acetylphenylalanine ethyl ester. The present results indicate that carboxypeptidase Y is free of metals and has a serine residue with a vital role in the catalytic process, though the functional role of this SH group remains to be clarified.  相似文献   

18.
The role of proton binding sites in the vesicular acetylcholine transporter was investigated by characterization of the pH dependence for the binding of [3H]vesamicol [(-)-trans-2-(4-phenylpiperidino)cyclohexanol] to Torpedo synaptic vesicles. A single proton binds to a site with pKa 7.1 +/- 0.1, which is characteristic of histidine, to competitively inhibit vesamicol binding. The histidine-selective reagent diethylpyrocarbonate causes time-dependent inhibition of [3H]vesamicol binding with a rate constant only about 20-fold lower than for reaction with free histidine. Because its pH titration has a simple, ideal shape, this residue probably controls all pH effects in the transporter between pH 6-8. Inhibition of [3H]vesamicol binding by diethylpyrocarbonate was slowed by vesamicol but not acetylcholine, which binds to a separate site. The data suggest that a critical histidine with a pKa of 7.1 is unhindered when reacting with diethylpyrocarbonate. A conformational model for the histidine is proposed to explain why acetylcholine competes with protons but not with diethylpyrocarbonate. A conserved histidine in transmembrane helix VIII possibly is the histidine detected here.  相似文献   

19.
The pH-dependent kinetics of lysyl oxidase catalysis was examined for evidence of an ionizable enzyme residue which might function as a general base catalyzing proton abstraction previously shown to be a component of the mechanism of substrate processing by this enzyme. Plots of log Vmax/Km for the oxidation of n-hexylamine versus pH yielded pKa values of 7.0 +/- 0.1 and 10.4 +/- 0.1. The higher pKa varied with different substrates, reflecting ionization of the substrate amino group. A van't Hoff plot of the temperature dependence of the lower pKa yielded a value of 6.1 kcal mol-1 for the enthalpy of ionization. This value as well as the pKa of 7.0 are consistent with those of histidine residues previously implicated as general base catalysts in enzymes. Incubation of lysyl oxidase with low concentrations of diethyl pyrocarbonate, a histidine-selective reagent, at 22 degrees C and pH 7.0 irreversibly inhibited enzyme activity by a pseudo first-order kinetic process. The inactivation of lysyl oxidase correlated with spectral and pH-dependent kinetic evidence for the chemical modification of 1 histidine residue/mol of enzyme, the pKa of which was 6.9 +/- 0.1, within experimental error of that seen in the plot of log Vmax/Km versus pH. Enzyme activity was restored by incubation of the modified enzyme with hydroxylamine, consistent with the ability of this nucleophile to displace the carbethoxy group from N-carbethoxyhistidine. The presence of the n-hexylamine substrate largely protected against enzyme inactivation by diethyl pyrocarbonate. These results thus indicate a functional role for histidine in lysyl oxidase catalysis consistent with that of a general base in proton abstraction.  相似文献   

20.
During aging there is a decrease in activity of the malic enzyme in rat liver. The "old" malic enzyme is about 36% less active than the "young" enzyme. Some properties and modifications of amino acid residues are studied here (--SH, arginine, methionine, histidine, lysine) to try and check on the existence of any relationship between them and the loss of enzymatic activity during aging. Diethyl pyrocarbonate measurements indicate that the old enzyme has 1 histidine residue less than the young enzyme. Moreover, the treatment of the young enzyme with ascorbate for 15 min produces the loss of 36% of the enzymatic activity and the loss of 1.2 histidine residues. These results suggest that during aging the modification of the histidine residue could be involved in the loss of its enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号