首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chemical cross-linking in combination with mass spectrometry has largely been used to study protein structures and protein-protein interactions. Typically, it is used in a qualitative manner to identify cross-linked sites and provide a low-resolution topological map of the interacting regions of proteins. Here, we investigate the capability of chemical cross-linking to quantify protein-protein interactions using a model system of calmodulin and substrates melittin and mastoparan. Calmodulin is a well-characterized protein which has many substrates. Melittin and mastoparan are two such substrates which bind to calmodulin in 1:1 ratios in the presence of calcium. Both the calmodulin-melittin and calmodulin-mastoparan complexes have had chemical cross-linking strategies successfully applied in the past to investigate topological properties. We utilized an excess of immobilized calmodulin on agarose beads and formed complexes with varying quantities of mastoparan and melittin. Then, we applied disuccinimidyl suberate (DSS) chemical cross-linker, digested and detected cross-links through an LC-MS analytical method. We identified five interpeptide cross-links for calmodulin-melittin and three interpeptide cross-links for calmodulin-mastoparan. Using cross-linking sites of calmodulin-mastoparan, we demonstrated that mastoparan also binds in two orientations to calmodulin. We quantitatively demonstrated that both melittin and mastoparan preferentially bind to calmodulin in a parallel fashion, which is opposite to the preferred binding mode of the majority of known calmodulin binding peptides. We also demonstrated that the relative abundances of cross-linked peptide products quantitatively reflected the abundances of the calmodulin peptide complexes formed.  相似文献   

2.
The interaction of calmodulin with melittin   总被引:1,自引:0,他引:1  
Studies utilizing the interaction of melittin with the 1-106 fragment of calmodulin, the protection of calmodulin from tryptic digestion by melittin, and the interaction of the carbocyanine dye Stains-all with the calmodulin-melittin complex have indicated that complex formation of calmodulin with melittin involves the alpha-helical connecting bridge joining the N- and C-terminal lobes of calmodulin.  相似文献   

3.
Melittin is a 26-amino acid amphipathic peptide which binds to calmodulin in a calcium-dependent manner. The utility of melittin as a peptide replica of the calmodulin-binding region of calmodulin acceptor proteins (CaMBPs) was investigated. Antibody against melittin was raised and purified by antigen affinity chromatography. Interaction of the antibody with CaMBPs was initially suggested by the ability of anti-melittin-Sepharose, but not nonimmune IgG-Sepharose, to bind calmodulin-dependent cyclic AMP phosphodiesterase. Direct interaction of melittin antibody with the calmodulin-binding domain of acceptor proteins was demonstrated by quantitative inhibition of calmodulin binding to the purified CaMBPs, myosin light chain kinase, and eel electric organ CaMBP55. These results indicate that melittin antibody identifies regions of structural similarity between calmodulin acceptor proteins, and this region includes a common calmodulin-binding domain.  相似文献   

4.
D A Malencik  S R Anderson 《Biochemistry》1984,23(11):2420-2428
Calmodulin and troponin C exhibit calcium-dependent binding of 1 mol/mol of dynorphin. The dissociation constants of the complexes, determined in 0.20 N KC1-1.0 mM CaCI2, pH 7.3, are 0.6 microM for calmodulin, 2.4 microM for rabbit fast skeletal muscle troponin C, and 9 microM for bovine heart troponin C. Experiments with deletion peptides of dynorphin show that peptide chain length and especially charge affect the binding of the peptides by calmodulin. Dynorphin, but not mastoparan or melittin, inhibits adenosinetriphosphatase activity in a reconstituted rabbit skeletal muscle actomyosin assay. The inhibition is partially reversed by the addition of calmodulin or troponin C in the presence of calcium. Calmodulin also exhibits calcium-dependent binding of a synthetic peptide corresponding to positions 104-115 of rabbit fast skeletal muscle troponin I. Mastoparan is a tetradecapeptide from the vespid wasp having exceptional affinity for calmodulin, with Kd approximately 0.3 nM [Malencik, D.A., & Anderson, S.R. (1983) Biochem. Biophys. Res. Commun. 114, 50]. The addition of 1 mol/mol of mastoparan to the complex of calmodulin with dynorphin results in complete dissociation of dynorphin. Similar titrations of the skeletal muscle troponin C-dynorphin complex produce a gradual dissociation consistent with a dissociation constant of 0.2 microM for the troponin C-mastoparan complex. Fluorescence anisotropy measurements using the intrinsic tryptophan fluorescence of mastoparan X show strongly calcium-dependent binding by proteolytic fragments of calmodulin. binding by proteolytic fragments of calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The interaction of calmodulin with amphiphilic peptides   总被引:16,自引:0,他引:16  
Calmodulin has recently been shown to form exceptionally tight, calcium-dependent complexes with several natural peptides (Kdiss greater than 10(-7) M). These peptides were demonstrated to be capable of forming basic, amphiphilic alpha-helices. To further illustrate the importance of this structural feature for calmodulin binding, several other amphiphilic alpha-helical peptides were tested for their ability to bind calmodulin. To monitor complexes of high affinity (greater than 10(8) M-1), a new competition assay was devised with Sepharose 4B-conjugated melittin. Stoichiometries were assessed by electrophoresis and equilibrium size exclusion chromatography. Three peptides, which were designed to form idealized amphiphilic alpha-helices were tested. The basic peptides, N alpha-9-fluorenylmethoxycarboxyl-(FMOC)-(Leu-Lys-Lys-Leu-Leu-Lys-L eu)1 and FMOC-(Leu-Lys-Lys-Leu-Leu-Lys-Leu)2 bind calmodulin in a 1:1 complex with dissociation constants of 150 and 3 nM, respectively. The acidic peptide, FMOC-(Leu-Glu-Glu-Leu-Leu-Glu-Leu)2 failed to bind calmodulin, even at micromolar concentrations. Complex formation between calmodulin and the 14-residue basic peptide leads to an increase in the helicity of the complex which is attributed to an increase of about 50% in the helicity of the peptide. Calmodulin also interacts with the neutral alpha-helical peptide toxin delta-hemolysin. Concomitant with binding, the fluorescence maximum of the unique Trp residue increases 2-fold and is blue-shifted. A dissociation constant could not be unambiguously estimated though, since delta-hemolysin has a strong tendency to self-aggregate. The above data support our hypothesis that a basic, amphiphilic alpha-helix is a structural feature which underlies the calmodulin-binding properties common to a variety of peptides.  相似文献   

6.
Flow microcalorimetric titrations of calmodulin with melittin at 25 degrees C revealed that the formation of the high-affinity one-to-one complex in the presence of Ca2+ (Comte, M., Maulet, Y., and Cox, J. A. (1983) Biochem, J. 209, 269-272) is entirely entropy driven (delta H0 = 30.3 kJ X mol-1; delta S0 = 275 J X K-1 X mol-1). Neither the proton nor the Mg2+ concentrations have any significant effect on the strength of the complex. In the absence of Ca2+, a nonspecific calmodulin-(melittin)n complex is formed; the latter is predominantly entropy driven, accompanied by a significant uptake of protons and fully antagonized by Mg2+. Enthalpy titrations of metal-free calmodulin with Ca2+ in the presence of an equimolar amount of melittin were carried out at pH 7.0 in two buffers of different protonation enthalpy. The enthalpy and proton release profiles indicate that: protons, absorbed by the nonspecific calmodulin-melittin complex, are released upon binding of the first Ca2+; Ca2+ binding to the high-affinity configuration of the calmodulin-melittin complex displays an affinity constant greater than or equal to 10(7) M-1, i.e. 2 orders of magnitude higher than that of free calmodulin; the latter is even more entropy driven (delta H0 = 7.2 kJ X site-1; delta S0 = 158 J X K-1 X site-1) than binding to free calmodulin (delta H0 = 4.7 kJ X site-1; delta S0 = 112 J X K-1 X site-1), thus underlining the importance of hydrophobic forces in the free energy coupling involved in the ternary complex.  相似文献   

7.
The NMR high-resolution structure of calmodulin complexed with a fragment of the olfactory cyclic-nucleotide gated channel is described. This structure shows features that are unique for this complex, including an active role of the linker connecting the N- and C-lobes of calmodulin upon binding of the peptide. Such linker is not only involved in the formation of an hydrophobic pocket to accommodate a bulky peptide residue, but it also provides a positively charged region complementary to a negative charge of the target. This complex of calmodulin with a target not belonging to the kinase family was used to test the residual dipolar coupling (RDC) approach for the determination of calmodulin binding modes to peptides. Although the complex here characterized belongs to the (1--14) family, high Q values were obtained with all the 1:1 complexes for which crystalline structures are available. Reduction of the RDC data set used for the correlation analysis to structured regions of the complex allowed a clear identification of the binding mode. Excluded regions comprise calcium binding loops and loops connecting the EF-hand motifs.Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1007/s10858-005-0165-1.  相似文献   

8.
Melittin is a 26-residue peptide which undergoes high-affinity calcium-dependent binding by calmodulin [Barnette, M.S., Daly, R., & Weiss, B. (1983) Biochem. Pharmacol. 32, 2929; Comte, M., Maulet, Y., & Cox, J.A. (1983) Biochem. J. 209, 269; Anderson, S.R., & Malencik, D.A. (1986) Calcium Cell Funct. 6, 1]. The results in this paper show that three different types of myosin light chain--the smooth muscle regulatory light chain, the smooth muscle essential light chain, and the skeletal muscle regulatory 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) light chain--also associate with melittin. The resulting complexes have dissociation constants ranging from 1.1 to 2.5 microM in the presence of 0.10 M NaCl and from approximately 50 to approximately 130 nM in solutions of 20 mM 3-(N-morpholino)propanesulfonic acid alone. The regulatory smooth muscle myosin light chain exhibits two equivalent melittin binding sites while each of the others displays only one. The myosin light chains evidently contain elements of structure related to the macromolecular interaction sites present in calmodulin and troponin C but not in parvalbumin. The association of melittin and other peptides with the light chains requires consideration whenever assays of the calmodulin-dependent activity of myosin light chain kinase are used to determine peptide binding by calmodulin. The binding measurements performed on the DTNB light chain and melittin necessitated derivation of the equation relating complex formation to the observed fluorescence anisotropy of a solution containing three fluorescent components. This analysis is generally applicable to equilibria involving the association of two fluorescent molecules emitting in the same wavelength range.  相似文献   

9.
采用固相法设计合成了4个蜂毒肽片段:Mel12、Me113、Mel14、Mel15。应用电泳技术,抑制钙依赖性的磷酸二酯酶酶活方法和荧光技术研究了这些多肽与钙调蛋白的相互作用。结果表明这些多肽与钙调蛋白均形成1:1复合物,抑制钙依赖性的磷酸二酯酶的活性,其中Mel14和Mel15对钙调蛋白的结合活性与完整的蜂毒肽比较接近。  相似文献   

10.
Thermodynamic parameters of interactions of calcium-saturated calmodulin (Ca(2+)-CaM) with melittin, C-terminal fragment of melittin, or peptides derived from the CaM binding regions of constitutive (cerebellar) nitric-oxide synthase, cyclic nucleotide phosphodiesterase, calmodulin-dependent protein kinase I, and caldesmon (CaD-A, CaD-A*) have been measured using isothermal titration calorimetry. The peptides could be separated into two groups according to the change in heat capacity upon complex formation, DeltaC(p). The calmodulin-dependent protein kinase I, constitutive (cerebellar) nitric-oxide synthase, and melittin peptides have DeltaC(p) values clustered around -3.2 kJ.mol(-1).K(-1), consistent with the formation of a globular CaM-peptide complex in the canonical fashion. In contrast, phosphodiesterase, the C-terminal fragment of melittin, CaD-A, and CaD-A* have DeltaC(p) values clustered around -1.6 kJ.mol(-1).K(-1), indicative of interactions between the peptide and mostly one lobe of CaM, probably the C-terminal lobe. It is also shown that the interactions for different peptides with Ca(2+)-CaM can be either enthalpically or entropically driven. The difference in the energetics of peptide/Ca(2+)-CaM complex formation appears to be due to the coupling of peptide/Ca(2+)-CaM complex formation to the coil-helix transition of the peptide. The binding of a helical peptide to Ca(2+)-CaM is dominated by favorable entropic effects, which are probably mostly due to hydrophobic interactions between nonpolar groups of the peptide and Ca(2+)-CaM. Applications of these findings to the design of potential CaM inhibitors are discussed.  相似文献   

11.
The 31-residue neuropeptide porcine beta-endorphin was shown to inhibit the Ca2+-dependent calmodulin activation of highly purified bovine brain cyclic nucleotide phosphodiesterase (3',5'-cyclic AMP 5'-nucleotidohydrolase, EC 3.1.4.17). Using a series of deletion peptides, the minimal inhibitory peptide sequence was found to correspond to beta-endorphin residues 14-25, confirming previously reported results for crude enzyme preparations. A correlation was found between the relative inhibitory potency of a particular beta-endorphin deletion peptide and the efficacy of cross-linking that peptide to calmodulin with bis(sulfosuccinimidyl) suberate, strongly implicating peptide binding to calmodulin as the mechanism of the observed inhibition. We found that relatively modest concentrations of chlorpromazine significantly reduced the efficiency of cross-linking beta-endorphin 14-31 to calmodulin. Chlorpromazine-Sepharose affinity chromatography of peptide/calmodulin adducts showed that a significant portion of the cross-linked beta-endorphin 14-31/calmodulin complex (stoichiometry of 1 mol/mol) retained the ability to interact with the immobilized phenothiazine in a Ca2+-dependent and calmodulin-displaceable manner. In contrast, the 2:1 (peptide:protein) product exhibited no affinity for the immobilized phenothiazine. The use of this affinity chromatographic step allowed preparation of homogeneous populations of both 1:1 and 2:1 beta-endorphin 13-31/calmodulin complexes and assessment of their functional characteristics. Equilibrium binding studies with chlorpromazine revealed that the covalent attachment of one peptide molecule to calmodulin perturbed all phases of Ca2+-dependent drug binding, but the adduct still bound significant quantities of chlorpromazine. The 2:1 complex, however, showed little detectable binding of the phenothiazine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The entry of enveloped viruses involves attachment followed by close apposition of the viral and plasma membranes. Then, either on the cell surface or in an endocytotic vesicle, the two membranes fuse by an energetically unfavourable process requiring the destabilisation of membrane microenvironment in order to release the viral nucleocapsid into the cytoplasm. The core fusion machinery, conserved throughout the herpesvirus family, involves glycoprotein B (gB) and the non-covalently associated complex of glycoproteins H and L (gH/gL). Both gB and gH possess several hydrophobic domains necessary for efficient induction of fusion, and synthetic peptides corresponding to these regions are able to associate to membranes and induce fusion of artificial liposomes. Here, we describe the first application of surface plasmon resonance (SPR) to the study of the interaction of viral membranotropic peptides with model membranes in order to enhance our molecular understanding of the mechanism of membrane fusion. SPR spectroscopy data are supported by tryptophan fluorescence, circular dichroism and electron spin resonance spectroscopy (ESR). We selected peptides from gB and gH and also analysed the behaviour of HIV gp41 fusion peptide and the cationic antimicrobial peptide melittin. The combined results of SPR and ESR showed a marked difference between the mode of action of the HSV peptides and the HIV fusion peptide compared to melittin, suggesting that viral-derived membrane interacting peptides all act via a similar mechanism, which is substantially different from that of the non-cell selective lytic peptide melittin.  相似文献   

13.
The calcium-dependent binding of melittin by calmodulin effectively inhibits the hemolytic activity of melittin in suspensions of washed rabbit erythrocytes. Protection is also obtained with troponin C (+/-Ca++), denatured phosphorylase kinase, and denatured calcineurin but not with whole troponin or the native enzymes. These effects can be used both in assays for melittin in venom samples and in determinations of calmodulin or related proteins.  相似文献   

14.
Acetylation at the α-amino terminal is a common post-translational modification of many peptides and proteins. In the case of the potent opiate peptide β-endorphin, α-N-acetylation is a known physiological modification that abolishes opiate activity. Since there are no known receptors for α-N-acetyl-β-endorphin, we have studied the association of this peptide with calmodulin, a calcium-dependent protein that binds a variety of peptides, phenothiazines, and enzymes, as a model system for studying acetylated endorphin-protein interactions. Association of the acetylated peptide with calmodulin was demonstrated by cross-linking with bis(sulfosuccinimidyl)suberate; like β-endorphin, adducts containing 1 mol and 2 mol of acetylated peptide per mole calmodulin were formed. Some of the bound peptides are evidently in relatively close proximity to each other since, in the presence of amidated (i.e., lysine-blocked) calmodulin, cross-linking yielded peptide dimers. The acetylated peptide exhibited no appreciable helicity in aqueous solution, but in trifluoroethanol (TFE) considerable helicity was formed. Also, a mixture of acetylated peptide and calmodulin was characterized by a circular dichroic spectrum indicative of induced helicity. Empirical prediction rules, applied earlier to β-endorphin, suggest that residues 14–24 exhibit α-helix potential. This segment has the potential of forming an amphipathic helix; this structural unit is believed to be important in calmodulin binding. The acetylated peptide was capable of inhibiting the calmodulin-mediated stimulation of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity with an effective dose for 50% inhibition of about 3 µM; this inhibitory effect was demonstrated using both an enzyme-enriched preparation as well as highly purified enzyme. Thus, acetylation at the α-amino terminal of β-endorphin, although abolishing opiate activity, does not interfere with the binding to calmodulin. Indeed, β-endorphin and the α-N-acetylated peptide behave very similarly with respect to calmodulin association.  相似文献   

15.
16.
To elucidate the interaction of calmodulin with calmodulin binding proteins, we studied the location of the interaction sites on calmodulin by using a chemical cross-linking reagent. Calmodulin prepared from wheat germ was cross-linked to myosin light chain kinase and troponin-I with 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide. The cross-linked products were cleaved partially with cyanogen bromide and cross-linked sites were determined by peptide mapping analysis using SDS-urea polyacrylamide gel electrophoresis. Peptides which contain the cross-linked site were displaced from their position because of the attached fragments of myosin light chain kinase or troponin I. The peptide of calmodulin from the N-terminal to Met-73 in the cross-linked product with myosin light chain kinase had the same mobility as that of uncross-linked calmodulin on the map though the amount of the peptide was decreased in the cross-linked product. The peptide from the N-terminal to Met-110 in the cross-linked product was displaced from its position. Similar change in the mobility of the calmodulin peptides was also observed in the cross-linked products with troponin I. It was concluded, therefore, that at least one cross-linked site for myosin light chain kinase and one for troponin I were located between Met-73 and Met-110 of the wheat germ calmodulin.  相似文献   

17.
The interaction between calmodulin (CaM) and peptide M13, its target binding sequence from skeletal muscle myosin light chain kinase, involves predominantly two sets of interactions, between the N-terminal target residues and the C-domain of calmodulin, and between the C-terminal target residues and the N-domain of calmodulin (Ikura M et al., 1992, Science 256:632-638). Using short synthetic peptides based on the two halves of the target sequence, the interactions with calmodulin and its separate C-domain have been studied by fluorescence and CD spectroscopy, calcium binding, and kinetic techniques. Peptide WF10 (residues 1-10 of M13) binds to CaM with Kd approximately 1 microM; peptide FW10 (residues 9-18 of M13, with Phe-17-->Trp substitution) binds to CaM with Kd approximately 100 microM. The effect of peptide WF10 on calcium binding to calmodulin produces a biphasic saturation curve, with marked enhancement of affinity for the binding of two calcium ions to the C-domain, forming a stable half-saturated complex, Ca2-CaM-peptide, and confirming the functional importance of the interaction of this sequence with the C-domain. Stopped-flow studies show that the EGTA-induced dissociation of WF10 from Ca4-CaM proceeds by a reversible relaxation mechanism from a kinetic intermediate state, also involving half-saturation of CaM, and the same mechanism is evident for the full target peptide. Interaction of the N-terminal target residues with the C-domain is energetically the most important component, but interaction of calmodulin with the whole target sequence is necessary to induce the full cooperative interaction of the two contiguous elements of the target sequence with both N- and C-domains of calmodulin. Thus, the interaction of calmodulin with the M13 sequence can be dissected on both a structural and kinetic basis into partial reactions involving intermediates comprising distinct regions of the target sequence. We propose a general mechanism for the calcium regulation of calmodulin-dependent enzyme activation, involving an intermediate complex formed by interaction of the calmodulin C-domain and the corresponding part of the target sequence. This intermediate species can function to regulate the overall calcium sensitivity of activation and to determine the affinity of the calmodulin target interaction.  相似文献   

18.
The intermolecular contact regions between monomers of the homodimeric DNA binding protein ParR and the interaction between the glycoproteins CD28 and CD80 were investigated using a strategy that combined chemical cross-linking with differential MALDI-MS analyses. ParR dimers were modified in vitro with the thiol-cleavable cross-linker 3,3'-dithio-bis(succinimidylproprionate) (DTSSP), proteolytically digested with trypsin and analyzed by MALDI-MS peptide mapping. Comparison of the peptide maps obtained from digested cross-linked ParR dimers in the presence and absence of a thiol reagent strongly supported a "head-to-tail" arrangement of the monomers in the dimeric complex. Glycoprotein fusion constructs CD28-IgG and CD80-Fab were cross-linked in vitro by DTSSP, characterized by nonreducing SDS-PAGE, digested in situ with trypsin and analyzed by MALDI-MS peptide mapping (+/- thiol reagent). The data revealed the presence of an intermolecular cross-link between the receptor regions of the glycoprotein constructs, as well as a number of unexpected but nonetheless specific interactions between the fusion domains of CD28-IgG and the receptor domain of CD80-Fab. The strategy of chemical cross-linking combined with differential MALDI-MS peptide mapping (+ thiol reagent) enabled localization of the interface region(s) of the complexes studied and clearly demonstrates the utility of such an approach to obtain structural information on interacting noncovalent complexes.  相似文献   

19.
Binding of hormones and neuropeptides by calmodulin   总被引:5,自引:0,他引:5  
Calmodulin exhibits high-affinity, calcium-dependent binding of 1 mol/mol of the vasoactive intestinal peptide (VIP), secretin, and either the 42- or 43-residue gastric inhibitory peptide (GIP) with dissociation constants of 0.05-0.14 microM. The affinity of VIP for calmodulin approaches its affinity for the cell-surface VIP receptors. These peptides compete with both smooth muscle myosin light chain kinase and glucagon in calmodulin binding. Calculation of amino acid frequencies for eight calmodulin binding peptides (VIP, GIP, secretin, ACTH, beta-endorphin, substance P, glucagon, and dynorphin [Malencik, D. A., & Anderson, S. R. (1982) Biochemistry 21, 3480]) shows a below-average incidence of glutamyl residues, above-average incidence of glutaminyl residues, and average incidence of both aspartyl and asparaginyl residues. Predictions of structure from sequence suggest that the bound peptides contain strongly basic turns and coils in close association with regions having above-average beta-sheet potential. The temperature dependence of glucagon binding by calmodulin shows that the association is enthalpy driven.  相似文献   

20.
Probable role of amphiphilicity in the binding of mastoparan to calmodulin   总被引:6,自引:0,他引:6  
Two-dimensional helical wheel diagrams and calculations of mean hydrophobic moments show mastoparan, mastoparan X, and Polistes mastoparan to have all the properties expected for amphiphilic helices. Circular dichroic properties are consistent with a random form for these peptides in dilute aqueous solution, but greater than 50% helix is apparent when the peptides are dissolved in 70% trifluoroethanol/water mixtures (v/v) or when the peptides are bound to calmodulin. Changes in the fluorescence spectra, anisotropy, and accessibility of tryptophan whose indole side chain is on the apolar surface of the amphiphilic helix imply a significant role for the apolar surface in the binding of the mastoparans and another amphiphilic peptide, melittin, to calmodulin. These data provide a useful model for designing high-affinity synthetic peptide inhibitors of calmodulin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号