首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, alpha-bisabolol, a sesquiterpene alcohol present in natural essential oil, was found to have a strong time- and dose-dependent cytotoxic effect on human and rat glioma cells. After 24 h of treatment with 2.5-3.5 microM alpha-bisabolol, the viability of these cells was reduced by 50% with respect to untreated cells. Furthermore, the viability of normal rat glial cells was not affected by treatment with alpha-bisabolol at the same concentrations as above. Glioma cells treated with high concentration of alpha-bisabolol (10 microM) resulted in a 100% cell death. Judging from hypo-G1 accumulation, poly(ADP-ribose) polymerase cleavage, and DNA ladder formation, the cytotoxicity triggered by alpha-bisabolol resulted from apoptosis induction. Moreover, the dissipation of mitochondrial-inner transmembrane potential and the release of cytochrome c from mitochondria indicated that, in these glioma cells, apoptosis occurred through an intrinsic pathway. As pointed out by the experimental results, alpha-bisabolol may be considered a novel compound able to inhibit glioma cell growth and survival.  相似文献   

2.
Heterozygous red leaf peach (Prunus persica (L.) Batsch) shoots were implanted on media with varying nitrogen and carbohydrate regimes to identify a combination which elicited maximum anthocyanin production in explants. A medium with relatively low nitrogen (5 mM NH4+ and 10 mM NO3-) and high sucrose (234 mM) was most effective in stimulating anthocyanin production. Sucrose was more effective as a carbon source than glucose, fructose, or starch under given nitrogen levels. The major anthocyanin in red leaf peach was tentatively identified as cyanidin 3-glucoside based on PC and HPLC analysis.  相似文献   

3.
4.
The production of anthocyanin in Catharanthus roseus flowers from both field-grown and regenerated by somatic embryogenesis plants and cell cultures was described. The anthocyanins were identified as the 3-O-glucosides, and the 3-O-(6-O-p-coumaroyl) glucosides of hirsutidin, malvidin and petunidin, respectively both in vivo and in vitro. The influence of environmental conditions on in vitro anthocyanin accumulation is described. The relationship between in vivo and in vitro anthocyanin production is discussed.  相似文献   

5.
The involvement of Ca2+ ATPases in anthocyanin accumulation in callus cultures of Daucus carota was investigated under the influence of calcium and calcium channel modulators. Ionophore (I) treatment enhanced callus growth and anthocyanin accumulation. Increasing the amount of calcium applied to cultures enhanced the anthocyanin level. Ionophore treatment influenced the enhancement of Ca2+ATPase and endogenous titres of PAs. Addition of the calcium channel blocker verapamil or the calmodulin antagonist chlorpromazine to the A23187 (ionophore) treated cells caused a reduction in anthocyanin levels. Channel blockers reduced Ca2+ATPase activity, which was restored by ionophore treatment, showing the importance of calcium in anthocyanin production. Higher ethylene levels were also found in treatment with ionophore or 2X calcium. Thus the influence of ionophore in anthocyanin production and its inhibition by calcium channel modulators suggests that calcium plays an important role in the production of anthocyanin by carrot callus cultures.  相似文献   

6.
J A Tuerck  M E Fromm 《The Plant cell》1994,6(11):1655-1663
The extensive genetic and molecular characterization of the flavonoid pathway's structural and regulatory genes has provided some of the most detailed knowledge of gene interactions in plants. In maize flavonoid biosynthesis, the A1 gene is independently regulated in the anthocyanin and phlobaphene pathways. Anthocyanin production requires the expression of the C1 or PI and R or B regulatory genes, whereas phlobaphene production requires only the P regulatory gene. By deletion analysis of the A1 promoter, we show that the sequences between -123 and -88 are critical for activation by anthocyanin and phlobaphene regulatory genes. Linker-scanner mutations indicated that the -123 to -100 region is more important for transactivation by the P protein. The -98 to -88 region is more important for B/C1 transactivation and shows a strong homology with the region of the Bz1 anthocyanin structural gene promoter shown to be activated by B/C1 and not by P. We identified a 14-bp consensus sequence that is also present in the promoters of three other genes in the anthocyanin pathway, and we propose a model for how the flavonoid regulatory proteins interact with the promoters of the structural genes.  相似文献   

7.
Rengel, Z. and Kordan, H. A. 1987. Effects of growth regulators on light-dependent anthocyanin production in Zea mays seedlings.
The effects of ethylene, indolyl- and naphthylacetic acids, zeatin, benzyladenine, gib-berellic acid and triiodobenzoic acid on anthocyanin production in seedlings of Zea mays L. cv. Golden Bantam were investigated. Endogenously produced and exogen-ously supplied ethylene, as well as the other growth regulators tested markedly suppressed anthocyanin formation. Except for triiodobenzoic acid, the other growth regulators stimulated ethylene production, the amounts produced in the light being larger than those in the dark. Absorption of ethylene by permanganate as well as inhibition of ethylene production or action by Co2+ or Ag+ increased anthocyanin formation in maize seedlings above the level found in the control plants. The inhibiting effect of auxins and cytokinins on anthocyanin production was reversed by Co2+ or Ag+. In contrast, decreased anthocyanin formation caused by gibberellic acid or triiodobenzoic acid seemed unrelated to ethylene and could not be alleviated by Co2+ or Ag+.  相似文献   

8.
Gynura bicolor DC., a traditional vegetable in Japan, is cultivated as Kinjisou and Suizenjina in Ishikawa and Kumamoto prefectures, respectively. The adaxial side of the leaves of G. bicolor grown in a field is green, and the abaxial side is reddish purple. It has been reported that these reddish purple pigments are anthocyanins. Although we established a culture system of G. bicolor, the leaves of G. bicolor plants grown under our culture conditions showed green color on both sides of all leaves. We investigated the effects of phytohormones and chemical treatments on anthocyanin accumulation in cultured plants. Although anthocyanin accumulation in the leaves was slightly stimulated, anthocyanins accumulation in the roots of the cultured plant was induced remarkably by 25–50 μM methyl jasmonate (MJ) treatment. This induction was affected by light irradiation and sucrose concentration in the culture medium. However, salicylic acid (SA) and 1-aminocyclopropane-1-carboxylic acid did not induce anthocyanin accumulation in roots. And then, combinations of MJ and SA or MJ and AgNO3 did not stimulate the anthocyanin accumulation in the root as found in the case of treatment by MJ solely.  相似文献   

9.
Alpha-bisabolol is a compound present in some essential oils, widely distributed in several plants, including camomile. Two different methods for analysing an essential oil, such as alpha-bisabolol in human blood are reported: the first uses micro-liquid chromatography-electrospray ionisation-mass spectrometry (muHPLC-ESI-MS), whereas the second is based on "head space" injection coupled to gas chromatography-mass spectrometry (HS-GC-MS). For LC-ESI-MS, human blood samples, spiked with alpha-bisabolol, were extracted with hexane and evaporated to dryness under air stream. The residue was then reconstituted with methanol and injected into a C18 column, connected to an ion trap mass spectrometer equipped with an ESI source. Spectra were recorded in the positive ion, selected ion monitoring mode. The detection limit of alpha-bisabolol in blood was 0.125 micromol/l. The preparation of samples for the analysis in HS-GC-MS was limited to blood dilution with water (0.5 ml blood + 1 ml water). Head space vials were heated at 125 degrees C for 1 h before automatic injection. The HS-GC-MS detection limit (0.13 micromol/l) was similar to that achieved with the muHPLC-ESI-MS method. Successful tests were performed to verify if alpha-bisabolol could be directly measured by the HS-GC-MS method in different biological samples (blood, urine, faeces, homogenate tissues) from rats treated with the camomile essential oil.  相似文献   

10.
11.
The biocatalytic potential of Bipolaris sorokiniana was investigated in its ability to modify the monoterpene geraniol and the sesquiterpene alpha-bisabolol as exogenous substrates, using phosphate buffer as reaction medium. The cultures showed a promising oxidative profile, with conversion of geraniol to 6-methyl-5-hepten-2-one (74.9% yield) in a 5-day incubation and alpha-bisabolol to bisabolol oxide B (84.2% yield), in a 7-day incubation.  相似文献   

12.
Recent studies have shown that application of phytohormones to shoots of Alyssum murale increased biomass production but did not increase Ni shoot concentration. Increased biomass and Ni phytoextraction efficiency is useful to achieve economically viable phytomining. The objective of this study was to evaluate the effect of two types of phytohormones on the Ni phytoextraction capacity of four Alyssum species. Two different commercially available phytohormones (Cytokin® and Promalin®) based on cytokinins and/or gibberellins were applied on shoot biomass of four Ni hyperaccumulating Alyssum species (A. corsicum, A. malacitanum, A. murale, and A. pintodasilvae). Cytokin was applied in two concentrations and promalin in one concentration. The application of phytohormones had no clear positive effect on biomass production, Ni accumulation and Ni phytoextraction efficiency in the studied Alyssum species. A. malacitanum was the only species in which a significantly negative effect of these treatments was observed (in Ni uptake). A slightly positive response to promalin treatment was observed in the biomass production and Ni phytoextraction efficiency of A. corsicum. Although this effect was not significant it does indicate a potential application of these approaches to improve phytoextraction ability. Further studies will be needed to identify the most adequate phytohormone treatment as well as the appropriate concentrations and application times.  相似文献   

13.
Takeda, J. 1988. Light-induced synthesis of anthocyanin in carrotcells in suspension. I. The factors affecting anthocyanin production.—J.exp. Bot. 39: 1065–1077. A light-triggered anthocyanin-synthesizing system was establishedfor carrot cells in suspension. A few days after transfer ofthe cells to a 2,4-dichlorophenoxyacetic acid (2,4-D)-free mediumin the dark, light irradiation triggered anthocyanin synthesisand concomitantly stopped expansion growth. Over 90% of thecells synthesized anthocyanin without cell division. By loweringthe concentration of phosphate or both nitrogen and phosphateand delaying the time of onset of irradiation, the productionof anthocyanin per cell increased to a maximum level of 0–8µmol anthocyanin per 106 cells. A change in the physiologicalstate of cells (light-insensitive to light-sensitive state)induced by the transfer to 2,4-D-free medium is suggested tobe a prerequisite for the light-triggered synthesis of anthocyanin. Key words: Anthocyanin production, cultured cells, Daucus carota, light-triggered, 2,4-D  相似文献   

14.
郑穗平  郭勇   《广西植物》1998,18(1):70-74
本文研究了培养基中碳源和氮源变化对悬浮培养玫瑰茄细胞生长和花青素合成的影响。在8种不同的碳源中,麦芽糖有利于花青素的积累,而蔗糖和葡萄糖适合细胞生长,并有较高的花青素产率。在1%~10%蔗糖浓度范围内,4%浓度下细胞生长和花青素产率最高,而6%浓度下细胞花青素含量最高,高渗环境较有利于细胞花青素的积累。135mM的氮源总量已足够维持玫瑰茄细胞生长和花青素合成,氮源总量增加对细胞代谢有抑制作用。NH+4对细胞有显著抑制作用。总量135mM,NO-3与NH+4比例25∶2和23∶4时细胞生长和花青素合成最佳。  相似文献   

15.
The anthocyanin production of cultured Euphorbia millii cells using envelope-shaped film culture vessels increased with the decrease of film thickness. The optimum temperature for anthocyanin production under the illumination was at 22°C. The anthocyanin production was increased by 2 times with mild agitation.  相似文献   

16.
17.
The effect of different concentrations of growth regulators and sucrose on anthocyanin production in cell suspension cultures of Camptotheca acuminata Decaisne (Nyssaceae) was described for the first time and qualitatively and quantitatively evaluated. Anthocyanin production was significantly greater in the presence of kinetin, compared to benzyladenine, with the greatest concentration observed in the presence of 2 microM kinetin. No significant differences in anthocyanin production were observed when comparing 2,4-dichlorophenoxyacetic acid to alpha-naphthaleneacetic acid, except when using 2 microM, 2,4-dichlorophenoxyacetic acid, which resulted in greater anthocyanin production. High sucrose concentration enhanced the production of anthocyanins. Based on the absence of anthocyanin production in the dark, we concluded that light was essential for stimulating anthocyanin production. The optimised medium consisted of: 2 microM kinetin, 2 microM 2,4-dichlorophenoxyacetic acid and 292 mM sucrose. HPLC/DAD and HPLC/MS analyses revealed that the main anthocyanin was Cy 3-O-galactoside and that the minor derivative was Cy 3-O-glucoside.  相似文献   

18.
19.
The anthocyanin composition of berries of Maqui [Aristotelia chilensis (Mol.) Stuntz] was determined by HPLC with photodiode array and MS detection. Eight pigments corresponding to the 3-glucosides, 3,5-diglucosides, 3-sambubiosides and 3-sambubioside-5-glucosides of delphinidin and cyanidin were identified, the principal anthocyanin being delphinidin 3-sambubioside-5-glucoside (34% of total anthocyanins). The average total anthocyanin content was 137.6 +/- 0.4mg/100g of fresh fruit (211.9 +/- 0.6 mg/100g of dry fruit). The relative high anthocyanin content and the important presence of polar polyglycosylated derivatives makes the fruits of A. chilensis an interesting source of anthocyanin extracts for food and pharmaceutical uses.  相似文献   

20.
A large amount of anthocyanin was accumulated in the callus tissues of Vitis hybrids without light irradiation.

Culture conditions for the production of anthocyanins by Vitis cells in suspension cultures were investigated. High sucrose and low phosphate concentrations brought about a marked increase of anthocyanin formation, while high concentrations of nitrate, phosphate, and 2, 4-D repressed the pigment formation. The effects of these nutrients depended on the concentrations of coexistent ones.

Regulation of the aeration rate was important for anthocyanin formation in submerged aerated cultures and light irradiation enhanced anthocyanin formation in cultured cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号