共查询到20条相似文献,搜索用时 0 毫秒
1.
Lignin radicals are crucial intermediates for lignin biosynthesis in the cell wall of vascular plants. In this work they were for the first time, to our knowledge, selectively observed in wood cell walls by laser-based Kerr-gated resonance Raman spectroscopy, and the observations were supported by density functional theory prediction of their vibrational properties. For dry wood cells a lignin radical Raman band is observed at 1,570 cm(-1) irrespective of species. For wet beech cells they were generated in situ and observed at 1,606 cm(-1). DFT/B3LYP/6-31+G(d) modeling results support that in beech they are formed from syringyl (S) phenolic moieties and in spruce from guaiacyl (G) phenolic moieties. The observed lignin radical band is predicted as G is approximately 1,597 cm(-1) and S is approximately 1,599 cm(-1), respectively, and is assigned the (Wilson notation) nu(8a) phenyl ring mode. The RR band probes lignin radical properties, e.g., spin density distribution, and these respond to charge polarization or hydrogen bonding to proximate water molecules. These observations can be crucial for an understanding of the factors that control cell wall structure during biosynthesis of vascular plants and demonstrate the unique potential of RR spectroscopy of lignin radicals. 相似文献
2.
Aromatic amino acids of membrane proteins are enriched at the lipid-water interface. The role of tryptophan on the folding and stability of an integral membrane protein is investigated with ultraviolet resonance Raman and fluorescence spectroscopy. We investigate a model system, the β-barrel outer membrane protein A (OmpA), and focus on interfacial tryptophan residues oriented toward the lipid bilayer (trp-7, trp-170, or trp-15) or the interior of the β-barrel pore (trp-102). OmpA mutants with a single tryptophan residue at a nonnative position 170 (Trp-170) or a native position 7 (Trp-7) exhibit the greatest stability, with Gibbs free energies of unfolding in the absence of denaturant of 9.4 and 6.7 kcal/mol, respectively. These mutants are more stable than the tryptophan-free OmpA mutant, which exhibits a free energy of unfolding of 2.6 kcal/mol. Ultraviolet resonance Raman spectra of Trp-170 and Trp-7 reveal evolution of a hydrogen bond in a nonpolar environment during the folding reaction, evidenced by systematic shifts in hydrophobicity and hydrogen bond markers. These observations suggest that the hydrogen bond acceptor is the lipid acyl carbonyl group, and this interaction contributes significantly to membrane protein stabilization. Other spectral changes are observed for a tryptophan residue at position 15, and these modifications are attributed to development of a tryptophan-lipid cation-π interaction that is more stabilizing than an intraprotein hydrogen bond by ∼2 kcal/mol. As expected, there is no evidence for lipid-protein interactions for the tryptophan residue oriented toward the interior of the β-barrel pore. These results highlight the significance of lipid-protein interactions, and indicate that the bilayer provides more than a hydrophobic environment for membrane protein folding. Instead, a paradigm of lipid-assisted membrane protein folding and stabilization must be adopted. 相似文献
3.
P Hildebrandt 《Biochimica et biophysica acta》1990,1040(2):175-186
The interaction of ferricytochrome c with negatively charged heteropolytungstates was studied by resonance Raman spectroscopy. In analogy to previous findings on ferricytochrome c bound to other types of charged interface (Hildebrandt, P. and Stockburger, M. (1989) Biochemistry 28, 6710-6721, 6722-6728), it was shown that in these complexes the conformational states I and II are stabilized. While in state I, the structure is the same as is in the uncomplexed heme protein, in state II three different coordination configurations coexist, i.e., a six-coordinated low-spin, a five-coordinated high-spin and a six-coordinated high-spin form. These configurations constitute thermal coordination equilibria whose thermodynamic properties were determined. The detailed analysis of the low-frequency resonance Raman spectra reveals that in state II the heme pocket assumes an open structure leading to a significantly higher flexibility of the heme group compared to the native ferricytochrome c. It is concluded that these structural changes are the result of Coulombic attractions between the polyanions and the lysine residues around the exposed heme edge which destabilize the heme crevice. Modifications of these interactions upon variation of the ionic strength, the pH or the type of the polytungstate are sensitively reflected by changes of the coordination equilibria in state II as well as of the conformational equilibrium of state I and state II. The conformational changes in state II significantly differ from those associated with the alkaline transition of ferricytochrome c. However, there are some structural similarities between the acid form of the heme protein stable below pH 2.5 in aqueous solution and the six-coordinated high-spin configuration of the bound ferricytochrome c at neutral pH (state II). This suggests that electrostatic interactions with the heteropolytungstates perturb the ionic equilibria of those amino acid side chains which are involved in the acid-induced transition leading to a significant upshift of the apparent pKa. 相似文献
4.
Heme-linked ionizations of myeloperoxidase detected by Raman difference spectroscopy. A comparison with plant and yeast peroxidases. 下载免费PDF全文
The pH-dependence of the oxidation state marker line v4 of human leucocyte myeloperoxidase is determined in the absence of chloride using Raman difference spectroscopy (RDS). A transition in the frequency of v4 with pK of 4.2 +/- 0.3 is found. The pK compares favorably with that previously determined by spectrophotometric titration and kinetic studies. The shift in v4 across the transition is -1.3 cm-1. The shift in v4 and other Raman marker lines indicates enhanced pi charge in the chlorin ring below the transition. The low frequencies of the oxidation state marker lines indicate that a structural change occurs near the chromophore, which results in the formation of a more pi-charge donating protein environment for the chlorin ring at low pH. The Raman results are discussed in terms of a proposed catalytic control mechanism based on charge stabilization of the energy of ring charge-depleted ferryl intermediates of the reaction with peroxide. The myeloperoxidase findings are compared with similar RDS results for ferrous horseradish peroxidase and ferric cytochrome c peroxidase. 相似文献
5.
The Pseudomonas bacteriophage Pf3 is a long and narrow filament consisting of a covalently closed DNA single strand of 5833 bases sheathed by approximately 2500 copies of a 44-residue subunit. Ultraviolet resonance Raman spectra excited at 257, 244, 238, and 229 nm and off-resonance Raman spectra excited at 514.5 nm are reported for Pf3 in both H2O and D2O solutions. The key Raman bands are assigned to specific protein and DNA groups of the native virion assembly. The results are compared with proposed assembly models and Raman spectra recently reported for the isomorphous (class II) Pseudomonas phage Pf1 and the morphologically distinct (class I) coliphage fd [Wen, Z. Q., Overman, S. A., and Thomas, G. J. , Jr. (1997) Biochemistry 36, 7810-7820; Wen, Z. Q., Armstrong, A., and Thomas, G. J., Jr. (1999) Biochemistry 38, 3148-3156]. Surprisingly, deoxynucleosides of the packaged DNA genome of Pf3 adopt the same conformation (C3'-endo/anti) found for DNA packaged in the class I fd virion rather than that (C2'-endo/anti) associated with DNA in the isomorphous Pf1 virion. However, DNA base stacking in Pf3, as judged by Raman hypochromic effects, differs significantly from that occurring in either Pf1 or fd. Thus, the single-stranded DNA genomes of Pf3, Pf1, and fd are all organized differently within their respective capsids, implying that local subunit-DNA interactions may be important in determining the structure specific to each native assembly. The present study confirms a completely alpha-helical secondary structure for the Pf3 subunit and an unusual indolyl ring environment for the subunit tryptophan residue (Trp-38). 相似文献
6.
Tyrosine hydrogen-bonding and environmental effects in proteins probed by ultraviolet resonance Raman spectroscopy 总被引:4,自引:0,他引:4
P G Hildebrandt R A Copeland T G Spiro J Otlewski M Laskowski F G Prendergast 《Biochemistry》1988,27(15):5426-5433
Ultraviolet resonance Raman spectra with 229-nm excitation are reported for aqueous tyrosine and for ovomucoid third domain proteins from chicken [OMCHI3(-)] and from chachalaca [OMCHA(-)], as well as alpha 1-, alpha 2-, and beta-purothionin. At this excitation wavelength interference from phenylalanine is minimized, and it is possible to determine the frequencies of the Tyr ring modes nu 8a and nu 8b. The nu 8b frequency decreases with the degree of Tyr H-bond donation, reaching a limiting value for deprotonated tyrosine. This spectroscopic indicator of H-bond strength was calibrated by using the model compound p-cresol in H-bond acceptor solutions for which the enthalpy of H-bond formation can be obtained from the literature. With this calibration it is possible to estimate Tyr H-bond enthalpies in proteins for which Tyr is a H-bond donor; values of 13.7, 9.6, and 11.2 kcal/mol were found for OMCHA3(-) and for alpha 1- (or alpha 2-) and beta-purothionin, respectively. The intensity of the 1176-cm-1 nu 9a band of Tyr excited at 229 nm and also the intensity ratio of the Tyr 830/850-cm-1 Fermi doublet excited at 200 nm both correlate strongly with the estimated H-bond enthalpies, but large deviations are seen for the purothionins, reflecting a special environment for the Tyr residue of these proteins, which is believed to be constrained in a hydrophobic pocket. The molar intensity of the strong approximately 1000-cm-1 nu 12 band of phenylalanine in aqueous solution is about half the value observed in most proteins.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
7.
The alpha-abnormal hemoglobin (Hb) M variants show physiological properties different from the beta-abnormal Hb M variants, that is, extremely low oxygen affinity of the normal subunit and extraordinary resistance to both enzymatic and chemical reduction of the abnormal met-subunit. To get insight into the contribution of heme structures to these differences among Hb M's, we examined the 406.7-nm excited resonance Raman (RR) spectra of five Hb M's in the frequency region from 1700 to 200 cm(-1). In the high-frequency region, profound differences between met-alpha and met-beta abnormal subunits were observed for the in-plane skeletal modes (the nu(C=C), nu(37), nu(2), nu(11), and nu(38) bands), probably reflecting different distortions of heme structure caused by the out-of-plane displacement of the heme iron due to tyrosine coordination. Below 900 cm(-1), Hb M Iwate [alpha(F8)His --> Tyr] exhibited a distinct spectral pattern for nu(15), gamma(11), delta(C(beta)C(a)C(b))(2,4), and delta(C(beta)C(c)C(d))(6,7) compared to that of Hb M Boston [alpha(E7)His --> Tyr], although both heme irons are coordinated by Tyr. The beta-abnormal Hb M variants, namely, Hb M Hyde Park [beta(F8)His --> Tyr], Hb M Saskatoon [beta(E7)His --> Tyr], and Hb M Milwaukee [beta(E11)Val --> Glu], displayed RR band patterns similar to that of metHb A, but with some minor individual differences. The RR bands characteristic of the met-subunits of Hb M's totally disappeared by chemical reduction, and the ferrous heme of abnormal subunits was no longer bonded with Tyr or Glu. They were bonded to the distal (E7) or proximal (F8) His, and this was confirmed by the presence of the nu(Fe-His) mode at 215 cm(-1) in the 441.6-nm excited RR spectra. A possible involvement of heme distortion in differences of reducibility of abnormal subunits and oxygen affinity of normal subunits is discussed. 相似文献
8.
Soluble guanylate cyclase (sGC, EC 4.6.1.2) acts as a sensor for nitric oxide (NO), but is also activated by carbon monoxide in the presence of an allosteric modulator. Resonance Raman studies on the structure-function relations of sGC are reviewed with a focus on the CO-adduct in the presence and absence of allosteric modulator, YC-1, and substrate analogues. It is demonstrated that the sGC isolated from bovine lung contains one species with a five-coordinate (5c) ferrous high-spin heme with the Fe-His stretching mode at 204 cm(-1), but its CO adduct yields two species with different conformations about the heme pocket with the Fe-CO stretching (nuFe-CO) mode at 473 and 489 cm(-1), both of which are His- and CO-coordinated 6c ferrous adducts. Addition of YC-1 to it changes their population and further addition of GTP yields one kind of 6c (nuFe-CO=489 cm(-1)) in addition to 5c CO-adduct (nuFe-CO=521 cm(-1)). Under this condition the enzymatic activity becomes nearly the same level as that of NO adduct. Addition of gamma-S-GTP yields the same effect as GTP does but cGMP and GDP gives much less effects. Unexpectedly, ATP cancels the effects of GTP. The structural meaning of these spectroscopic observations is discussed in detail. 相似文献
9.
Characteristics in tyrosine coordinations of four hemoglobins M probed by resonance Raman spectroscopy 总被引:1,自引:0,他引:1
Resonance Raman spectra of four hemoglobins (Hbs) M with tyrosinate ligand, that is, Hb M Saskatoon (beta distal His----Tyr), Hb M Hyde Park (beta proximal His----Tyr), Hb M Boston (alpha distal His----Tyr), and Hb M Iwate (alpha proximal His----Tyr), were investigated in order to elucidate structural origins for distinctly facile reducibility of the abnormal subunit of Hb M Saskatoon in comparison with other Hbs M. All of the Hbs M exhibited the fingerprint bands for the Fe-tyrosinate proteins around 1600, 1500, and 1270 cm-1. However, Hb M Saskatoon had the lowest Fe-tyrosinate stretching frequency and was the only one to display the Raman spectral pattern of a six-coordinate heme for the abnormal beta subunit; the others displayed the patterns of a five-coordinate heme. The absorption intensity of Hb M Saskatoon at 600 nm indicated a transition with a midpoint pH at 5.2, whereas that of Hb M Boston was independent of pH from 7.2 to 4.8. The fingerprint bands for the tyrosinate coordination as well as the Fe-tyrosinate stretching band disappeared for Hb M Saskatoon at pH 5.0, and the resultant Raman spectrum resembled that of metHb A, while those bands were clearly observed for Hb M Boston at pH 5.0 and for two Hbs M at pH 10.0. These observations suggest that the unusual characteristics of the heme in the abnormal beta chain of Hb M Saskatoon result from the weak Fe-tyrosinate bond, which allows weak coordination of the proximal histidine, giving rise to the six-coordinate high-spin state at pH 7.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
On the basis of optical difference spectra, lactoperoxidase (LPO) was shown to form a 1:1 complex with aromatic donor molecules: resorcinol, hydroquinone, phenol, p-cresol, guaiacol, aniline, and benzohydroxamic acid. As compared with horseradish peroxidase (HRP), the values of the dissociation constant, Kd, of LPO-donor complexes were found to be 4-720-fold larger and were not greatly changed in the presence of KCN and by changes in pH in the range 4-9. The apparent enthalpy and entropy of the binding reactions were found to be -13 kJ mol-1 and -29 J mol-1 K-1, respectively, somewhat smaller (in absolute value) than the corresponding values of HRP. The difference spectra of LPO-donor complexes resembled each other, in contrast to the case of HRP, and the bindings of the donors to LPO occurred in a competitive fashion between the donors. Incubation of LPO with phenylhydrazine and hydrogen peroxide markedly depressed donor binding, the intensity of the Soret band, and the catalytic activity, probably as the result of formation of meso-phenyl derivatives of the heme. These findings suggest that the binding of aromatic donors to LPO occurs at a specific site, probably near the heme edge, where the electron transfer in the peroxidase reaction may take place. 相似文献
11.
El-Mashtoly SF Gu Y Yoshimura H Yoshioka S Aono S Kitagawa T 《The Journal of biological chemistry》2008,283(11):6942-6949
HemAT from Bacillus subtilis (HemAT-Bs) is a heme-based O2 sensor protein that acts as a signal transducer responsible for aerotaxis. HemAT-Bs discriminates its physiological effector (O2) from other gas molecules (CO and NO), although all of them bind to a heme. To monitor the conformational changes in the protein moiety upon binding of different ligands, we have investigated ultraviolet resonance Raman (UVRR) spectra of the ligand-free and O2-, CO-, and NO-bound forms of full-length HemAT-Bs and several mutants (Y70F, H86A, T95A, and Y133F) and found that Tyr70 in the heme distal side and Tyr133 and Trp132 from the G-helix in the heme proximal side undergo environmental changes upon ligand binding. In addition, the UVRR results confirmed our previous model, which suggested that Thr95 forms a hydrogen bond with heme-bound O2, but Tyr70 does not. It is deduced from this study that hydrogen bonds between Thr95 and heme-bound O2 and between His86 and heme 6-propionate communicate the heme structural changes to the protein moiety upon O2 binding but not upon CO and NO binding. Accordingly, the present UVRR results suggest that O2 binding to heme causes displacement of the G-helix, which would be important for transduction of the conformational changes from the sensor domain to the signaling domain. 相似文献
12.
Conformational change of myoglobin (Mb) accompanied by binding of a ligand was investigated with 244 nm excited ultraviolet resonance Raman Spectroscopy (UVRR). The UVRR spectra of native sperm whale (sw) and horse (h) Mbs and W7F and W14F swMb mutants for the deoxy and CO-bound states enabled us to reveal the UVRR spectra of Trp7, Trp14, and Tyr151 residues, separately. The difference spectra between the deoxy and CO-bound states reflected the environmental or structural changes of Trp and Tyr residues upon CO binding. The W3 band of Trp7 near the N-terminus exhibited a change upon CO binding, while Trp14 did not. Tyr151 in the C-terminus also exhibited a definite change upon CO binding, but Tyr103 and Tyr146 did not. The spectral change of Tyr residues was characterized through solvent effects of a model compound. The corresponding spectral differences between CO- and n-butyl isocyanide-bound forms were much smaller than those between the deoxy and CO-bound forms, suggesting that the conformation change in the C- and N-terminal regions is induced by the proximal side of the heme through the movement of iron. Although the swinging up of His64 upon binding of a bulky ligand is noted by X-ray crystallographic analysis, UVRR spectra of His for the n-butyl isocyanide-bound form did not detect the exposure of His64 to solvent. 相似文献
13.
Early events in the unfolding of apomyoglobin are studied with time-resolved ultraviolet resonance Raman (UVRR) spectroscopy coupled to a laser-induced temperature jump (T-jump). The UVRR spectra provide simultaneous probes of the aromatic side-chain environment and the amide backbone conformation. The amide bands reveal helix melting, with relaxation times of 70 and 16 micros at pH 5.5 and 4, respectively, in reasonable agreement with previously reported amide I' FTIR/T-jump relaxations (132 and 14 micros at pD 5.5 and 3). The acceleration at pH 4 is consistent with destabilization of the hydrophobic AGH core of the protein via protonation of a pair of buried histidines. The same relaxation times are found for intensity loss by the phenylalanine F12 band, signaling solvent exposure of the phenyl rings. There are seven Phe residues, distributed throughout the protein; they produce a global response, parallel to helix melting. Relaxation of the tryptophan W16 intensity also parallels helix melting at pH 5.5 but is twice as fast, 7 micros, at pH 4. The pH 5.5 signal arises from Trp 7, which is partially solvent-exposed, while the pH 4 signal arises from the buried Trp 14. Thus, Trp 14 is exposed to the solvent prior to helix melting of the AGH core, suggesting initial displacement of the A helix, upon which Trp 14 resides. All of the UVRR signals show a prompt response, within the instrument resolution (approximately 60 ns), which accounts for half of the total relaxation amplitude. This response is attributed to solvent penetration into the protein, possibly convoluted with melting of hydrated helix segments. 相似文献
14.
Marzena B. Fitzpatrick Yuji Obara Koyu Fujita David M. Dooley Roman S. Czernuszewicz 《Journal of inorganic biochemistry》2010,104(3):250-260
We have used low-temperature (77 K) resonance Raman (RR) spectroscopy as a probe of the electronic and molecular structure to investigate weak π-π interactions between the metal ion-coordinated His imidazoles and aromatic side chains in the second coordination sphere of blue copper proteins. For this purpose, the RR spectra of Met16 mutants of Achromobacter cycloclastes pseudoazurin (AcPAz) with aromatic (Met16Tyr, Met16Trp, and Met16Phe) and aliphatic (Met16Ala, Met16Val, Met16Leu, and Met16Ile) amino acid side chains have been obtained and analyzed over the 100-500 cm−1 spectral region. Subtle strengthening of the Cu(II)-S(Cys) interaction on replacing Met16 with Tyr, Trp, and Phe is indicated by the upshifted (0.3-0.8 cm−1) RR bands involving ν(Cu-S)Cys stretching modes. In contrast, the RR spectra of Met16 mutants with aliphatic amino acids revealed larger (0.2-1.8 cm−1) shifts of the ν(Cu-S)Cys stretching modes to a lower frequency region, which indicate a weakening of the Cu(II)-S(Cys) bond. Comparisons of the predominantly ν(Cu-S)Cys stretching RR peaks of the Met16X = Tyr, Trp, and Phe variants, with the molar absorptivity ratio ε1/ε2 of σ(∼455 nm)/π(∼595 nm) (Cys)S → Cu(II) charge-transfer bands in the optical spectrum and the axial/rhombic EPR signals, revealed a slightly more trigonal disposition of ligands about the copper(II) ion. In contrast, the RR spectra of Met16Z = Ala, Val, Leu, and Ile variants with aliphatic amino acid side chains show a more tetrahedral perturbation of the copper active site, as judged by the lower frequencies of the ν(Cu-S)Cys stretching modes, much larger values of the ε1/ε2 ratio, and the increased rhombicity of the EPR spectra. 相似文献
15.
Wojtuszewski K Mukerji I 《Protein science : a publication of the Protein Society》2004,13(9):2416-2428
The Escherichia coli protein HU functions as an architectural DNA-binding protein by facilitating DNA looping or bending to form multiprotein complexes. Although HU does not recognize a specific DNA sequence, site-specific binding to a number of discontinuous, looped, or bent DNA substrates has been observed. In this study UV resonance Raman (UVRR) spectroscopy is used to identify structural elements associated with low- and high-affinity binding by examining three different HU-DNA complexes. UVRR spectra obtained with an excitation wavelength of 210 nm, which preferentially enhances protein backbone amide vibrations, indicate that HU secondary structure content increases and the protein structure becomes more rigid upon binding to DNA. The increase in alpha-helical content is attributed to the C-terminal helix, which interacts with the DNA and may play a role in binding affinity and specificity. UVRR spectra obtained with a 215 nm excitation wavelength demonstrate that Pro mode intensity at 1455 cm(-1) decreases upon complex formation. This intensity decrease is attributed to the intercalation of Pro residues between DNA base pairs to induce a bend in the DNA, as has been observed previously in the IHF-DNA and HU-DNA cocrystal structures. DNA vibrational modes are also indicative of significant base unstacking and opening of the minor groove upon protein binding, consistent with bending and distortion of the DNA. In all three complexes, A-DNA conformational features are indicated by deoxyribose-phosphate backbone modes. These and other results suggest that protein-induced bending plays an important role in HU site-specific binding and supports a model of a mutually induced fit. 相似文献
16.
Weak protein-protein interactions (PPIs) are fundamental to many cellular processes, such as reversible cell-cell contact, rapid enzyme turnover and transient assembly and/or reassembly of large signaling complexes. However, structural and functional characterizations of weak PPIs have been technically challenging and lagged behind those for strong PPIs. Here, we describe nuclear magnetic resonance (NMR) spectroscopy as a highly effective tool for unraveling the atomic details of weak PPIs. We highlight the recent advances of how NMR can be used to rapidly detect and structurally determine extremely weak PPIs (K(d)>10(-4)M). Coupled with functional approaches, NMR has the potential to look into a wide variety of biologically important weak PPIs at the detailed molecular level, thereby facilitating a thorough view of how proteins function in living cells. 相似文献
17.
The pH dependence for the interconversion of the acid and base forms of methemerythrin from Themiste dyscritum was investigated by difference spectroscopy. A new technique was designed to be able to study mixtures without knowledge of extinction coefficients or exact protein concentrations. The resultant pKa value of 8.4 proved that T. dyscritum hemerythrin crystals used for previous X-ray crystallographic studies at pH less than or equal to 6.5 were in the acid form. Since this material contains a 5-coordinate iron atom with no evidence of a ligated water molecule, it is more appropriately referred to as methemerythrin than aquomethemerythrin. The presence of an iron-bound hydroxide in the base form of methemerythrin was verified by resonance Raman spectroscopy for both T. dyscritum and Phascolopsis gouldii. At pH greater than 9, the protein from either species exhibited a new feature at 490 cm-1 that shifted to 518 cm-1 in D2O and was assigned to a coupled Fe-OH stretching and O-H bending vibration. Thus, hydroxomethemerythrin is the correct designation for the base form of the protein. The other resonance-enhanced vibration, the Fe-O-Fe symmetric stretch, was observed at 506 cm-1 in hydroxomethemerythrin and at 511 cm-1 in methemerythrin and was unaffected by deuteration. Addition of perchlorate to methemerythrin had no effect on the Raman spectrum, despite its known role in stabilizing the met form relative to the hydroxomet form. 相似文献
18.
Structural basis of polyamine-DNA recognition: spermidine and spermine interactions with genomic B-DNAs of different GC content probed by Raman spectroscopy 下载免费PDF全文
Four genomic DNAs of differing GC content (Micrococcus luteus, 72% GC; Escherichia coli, 50% GC; calf thymus, 42% GC; Clostridium perfringens, 27% GC) have been employed as targets of interaction by the cationic polyamines spermidine {[H3N(CH2)3NH2(CH2)4NH3]3+} and spermine {[(CH2)4(NH2(CH2)3NH3)2]4+}. In solutions containing 60 mM DNA phosphate (~20 mg DNA/ml) and either 1, 5 or 60 mM polyamine, only Raman bands associated with the phosphates exhibit large spectral changes, demonstrating that B-DNA phosphates are the primary targets of interaction. Phosphate perturbations, which are independent of base composition, are consistent with a model of non-specific cation binding in which delocalized polyamines diffuse along DNA while confined by the strong electrostatic potential gradient perpendicular to the helix axis. This finding provides experimental support for models in which polyamine-induced DNA condensation is driven by non-specific electrostatic binding. The Raman spectra also demonstrate that major groove sites (guanine N7 and thymine C5H3) are less affected than phosphates by polyamine–DNA interactions. Modest dependence of polyamine binding on genome base composition suggests that sequence context plays only a secondary role in recognition. Importantly, the results demonstrate that polyamine binding has a negligible effect on the native B-form secondary structure. The capability of spermidine or spermine to bind and condense genomic B-DNA without disrupting the native structure must be taken into account when considering DNA organization within bacterial nucleoids or cell nuclei. 相似文献
19.
Spectroscopic methods reveal differences in flexibility and stability of P450 forms. Among microsomal P450s, the most flexible active site has been found in the CYP3A4 enzyme as it is compressible and the heme vinyl side chains may adopt two different conformations. On the other hand, active site of this enzyme denatures quite easily upon hydrostatic pressure. The most rigid active site able to withstand the effect of high pressure has CYP1A2. The bacterial CYP102 (BM3) flavocytochrome has also a rather stable, but flexible active site. The differences between CYP3A4 and CYP1A2 active sites apparently reflect their ability to bind various substrates: whereas the CYP3A4 binds a vast variety of structures, the CYP1A2 preferentially binds planar, aromatic structures and its substrate specificity is relatively narrow. 相似文献
20.
Germano M Pascal A Shkuropatov AY Robert B Hoff AJ van Gorkom HJ 《Biochemistry》2002,41(38):11449-11455
Soret-excited resonance Raman spectra of two types of pheophytin-exchanged photosystem II RCs are reported. The cofactor composition of the reaction centers was modified by exchanging pheophytin a for 13(1)-deoxo-13(1)-hydroxypheophytin a, yielding one preparation with selective replacement of the photochemically inactive pheophytin (H(B)) and a second one exhibiting total replacement of H(B) and 40% replacement of H(A), the primary electron acceptor. Resonance Raman spectra indicate that the other bound cofactors present are not significantly perturbed by Pheo substitution. The resonance Raman contributions from H(A) and H(B) in the carbonyl stretching region are identified at 1679 and 1675 cm(-)(1), respectively, indicating that both pheophytin molecules in the photosystem II reaction center have hydrogen-bonded keto-carbonyl groups. This conclusion differs from what is observed in the functionally related RCs of purple non-sulfur bacteria, where the keto-carbonyl group of H(B) is not hydrogen bonded, but confirms predictions from models based on protein sequence alignments. 相似文献