首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The oxaloacetate decarboxylase Na+ pumps OAD-1 and OAD-2 of Vibrio cholerae are composed of a peripheral alpha-subunit associated with two integral membrane-bound subunits (beta and gamma). The alpha-subunit contains the carboxyltransferase domain in its N-terminal portion and the biotin-binding domain in its C-terminal portion. The gamma-subunit plays a profound role in the assembly of the complex. It interacts with the beta-subunit through its N-terminal membrane-spanning region and with the alpha-subunit through its hydrophilic C-terminal domain. The biochemical and structural requirements for the latter interaction were analysed with OAD-2 expression clones for subunit alpha-2 and the C-terminal domain of gamma-2, termed gamma'-2. If the two proteins were synthesized together in Escherichia coli they formed a complex that was stable at neutral pH and dissociated at pH<5.0. An internal stretch of 40 amino acids of alpha-2 was identified by deletion mutagenesis to be essential for the binding with gamma'-2. This portion of the alpha-subunit is connected via flexible linker peptides to the carboxyltransferase domain at its N terminus and to the biotin-binding domain at its C terminus. Results of site-directed mutagenesis indicated that a conserved tyrosine (491) and threonine 494 of this peptide contributed significantly to the stability of the complex with gamma'-2. This peptide therefore represents a newly identified, separate domain of the alpha-subunit and has been called the 'association domain'.  相似文献   

2.
Oxaloacetate decarboxylase is a membrane-bound multiprotein complex that couples oxaloacetate decarboxylation to sodium ion transport across the membrane. The initial reaction catalyzed by this enzyme machinery is the carboxyl transfer from oxaloacetate to the prosthetic biotin group. The crystal structure of the carboxyltransferase at 1.7 A resolution shows a dimer of alpha(8)beta(8) barrels with an active site metal ion, identified spectroscopically as Zn(2+), at the bottom of a deep cleft. The enzyme is completely inactivated by specific mutagenesis of Asp17, His207 and His209, which serve as ligands for the Zn(2+) metal ion, or by Lys178 near the active site, suggesting that Zn(2+) as well as Lys178 are essential for the catalysis. In the present structure this lysine residue is hydrogen-bonded to Cys148. A potential role of Lys178 as initial acceptor of the carboxyl group from oxaloacetate is discussed.  相似文献   

3.
The oxaloacetate decarboxylase Na(+) pump consists of subunits alpha, beta and gamma, and contains biotin as the prosthetic group. The peripheral alpha subunit catalyzes the carboxyltransfer from oxaloacetate to the prosthetic biotin group to yield the carboxybiotin enzyme. Subsequently, this is decarboxylated in a Na(+)-dependent reaction by the membrane-bound beta subunit. The decarboxylation is coupled to Na(+) translocation from the cytoplasm into the periplasm, and consumes a periplasmically derived proton. The gamma subunit contains a Zn(2+) metal ion which may be involved in the carboxyltransfer reaction. It is proposed to insert with its N-terminal alpha-helix into the membrane and to form a complex with the alpha subunit with its water-soluble C-terminal domain. The beta subunit consists of nine transmembrane alpha-helices, a segment (IIIa) which inserts from the periplasm into the membrane but does not penetrate it, and connecting hydrophilic loops. The most highly conserved regions of the molecule are segment IIIa and transmembrane helix VIII. Functionally important residues are D203 (segment IIIa), Y229 (helix IV) and N373, G377, S382 and R389 (helix VIII). The polar of these amino acids may constitute a network of ionizable groups which promotes the translocation of Na(+) and the oppositely oriented translocation of H(+) across the membrane. Evidence indicates that two Na(+) ions are bound simultaneously to subunit beta with D203 and S382 acting as binding sites. Sodium ion binding from the cytoplasm to both sites elicits decarboxylation of carboxybiotin possibly with the consumption of the proton extracted from S382 and delivered via Y229 to the carboxylated prosthetic group. A conformational change exposes the bound Na(+) ions toward the periplasm. With H(+) entering from the periplasm, the hydroxyl group of S382 is regenerated, and as a consequence, the Na(+) ions are released into this compartment. After switching back to the original conformation, Na(+) pumping continues.  相似文献   

4.
Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes.  相似文献   

5.
Oxaloacetate decarboxylase from Klebsiella aerogenes was shown to be composed of three different subunits alpha, beta, gamma with Mr 65 000, 34 000 and 12 000, respectively. On dodecylsulfate/polyacrylamide gels the smallest of these subunits was heavily stained with silver but poorly with Coomassie brilliant blue. All three subunits were resolved and clearly detectable by high-performance liquid chromatography in a dodecylsulfate-containing buffer. Biotin was localized exclusively in the alpha chain. Freezing and thawing of the isolated membranes in the presence of 1 M LiCl released the alpha chain which was subsequently purified to near homogeniety by affinity chromatography on monomeric avidin-Sepharose. No beta or gamma chain were detectable in this alpha chain preparation and no oxaloacetate decarboxylation was catalyzed. The isolated alpha chain, however, was a catalytically active carboxyltransferase as evidenced from the isotopic exchange between [1-14C]pyruvate and oxaloacetate. The rate of this exchange reaction was about 9 U/mg protein and was completely independent of the presence of Na+ ions. The ease with which the alpha chain was released from the membrane characterize this subunit as a peripheral membrane protein. The beta and gamma chain, on the other hand, stick so firmly in the membrane that they are only released by detergents, thus indicating that these are integral membrane proteins. Limited tryptic digestion of oxaloacetate decarboxylase led to a rapid cleavage of the alpha chain, yielding a polypeptide of Mr 51 000 which was devoid of biotin. Degradation of the beta chain required prolonged incubation periods and was markedly influenced by Na+ ions which had a protective effect against proteolysis. A proton is required in the decarboxylation of oxaloacetate and CO2 arises as primary product. The other alternative, i.e. generation of HCO3- with H2O as substrate, has been excluded.  相似文献   

6.
Oxaloacetate decarboxylase was reconstituted from the purified alpha subunit and a Triton X-100 extract of bacterial membranes devoid of this protein. Upon freezing of oxaloacetate decarboxylase in salt solutions, the enzyme was split into subunits and the catalytic activity was abolished. The catalytically active decarboxylase complex was reconstituted by decreasing the salt concentration of the dissociated sample. The conditions for the inactivation were critical for an optimum recovery of catalytically active enzyme during reconstitution, and modest dissociating conditions generally improved the yield of the reconstitutively active decarboxylase. The dissociated enzyme has been separated by chromatography on avidin-Sepharose into two fractions: fraction I, that was not retained on the column, consisted of the beta + gamma subunits, and fraction II consisted of the biotin-containing alpha subunit. Oxaloacetate decarboxylase was reconstituted from a mixture of the isolated alpha and beta + gamma subunits. The Na+ transport activity was recovered, if a mixture of subunits alpha and beta + gamma was incorporated into liposomes, or by a sequential reconstitution, starting with the formation of proteoliposomes with the integral membrane proteins beta + gamma and completed by an attachment of the peripheral subunit alpha.  相似文献   

7.
The mechanism of oxaloacetate decarboxylase of Klebsiella aerogenes was investigated by enzyme kinetic methods. The activity of the decarboxylase was strictly dependent on the presence of Na+ or Li+ ions. For Li+ the Km was about 17 times higher and the Vmax about 4 times lower than for Na+. No activity was detectable at Na+ concentrations less than 5 microM. The curve for initial velocity versus Na+ concentration was hyperbolic. Initial velocity patterns with oxaloacetate or Na+ as the varied substrate at various fixed concentrations of the cosubstrate produced a pattern of parallel lines which is characteristic for a ping-pong mechanism. Product inhibition by pyruvate was competitive versus oxaloacetate and noncompetitive versus Na+. Oxalate, a dead-end inhibitor, was competitive versus oxaloacetate and uncompetitive versus Na+. The inhibition patterns are not consistent with a ping-pong mechanism comprising a single catalytic site but are analogous to kinetic patterns observed with the related biotin enzyme transcarboxylase, for which a catalytic mechanism at two different and independent sites has been demonstrated. The kinetic and other data support an oxaloacetate decarboxylase mechanism at two different sites of the enzyme with the intermediate formation of a carboxybiotin-enzyme complex. The first site is the carboxyltransferase which is localized on the alpha chain and the second site is the carboxybiotin-enzyme decarboxylase which is probably localized on the beta and/or gamma subunit. Binding studies with oxalate indicated that this is bound with high affinity to the alpha chain. The affinity was not affected by Na+ or by complex formation with the beta and gamma subunits. Oxalate protected the decarboxylase from heat inactivation but not from tryptic hydrolysis. The carboxybiotin-enzyme intermediate prepared from oxaloacetate decarboxylase with high specific activity was rapidly decarboxylated in the presence of Na+ ions alone. The effect of pyruvate on this reaction, noted previously, probably results from inhomogeneity of the enzyme preparation used which contained a considerable amount of free alpha subunits.  相似文献   

8.
Sequencing of the gene encoding a pyruvate carboxylase-like protein from the amitochondrial eukaryote Giardia intestinalis revealed a 1,338 aa protein composed of acetyl-CoA carboxyltransferase (ACCT), pyruvate carboxyltransferase (PycB), and biotin carboxyl carrier protein (BCCP) domains, linked in a single polypeptide chain. This particular domain combination has been previously seen only in the methylmalonyl-CoA:pyruvate transcarboxylase from Propionibacterium freudenreichii, where each of these domains is encoded by an individual gene and forms a separate subunit. To get an insight into the evolutionary origin and biochemical function of the G. intestinalis enzyme, we compared its domain composition to those of other biotin-dependent enzymes and performed a phylogenetic analysis of each of its domains. The results obtained indicate that: (1) evolution of the BCCP domain included several domain fusion events, leading to the ACCT-BCCP and PycB-BCCP domain combinations; (2) fusions of the PycB and BCCP domains in pyruvate carboxylases and oxaloacetate decarboxylases occurred on several independent occasions in different prokaryotic lineages, probably due to selective pressure towards co-expression of these genes, and (3) because newly sequenced biotin-dependent enzymes are often misannotated in sequence databases, their annotation as either carboxylases, decarboxylases, or transcarboxylases has to rely on detailed analysis of their domain composition, operon organization of the corresponding genes, gene content in the particular genome, and phylogenetic analysis.  相似文献   

9.
Archaeoglobus fulgidus harbors three consecutive and one distantly located gene with similarity to the oxaloacetate decarboxylase Na+ pump of Klebsiella pneumoniae (KpOadGAB). The water-soluble carboxyltransferase (AfOadA) and the biotin protein (AfOadC) were readily synthesized in Escherichia coli, but the membrane-bound subunits AfOadB and AfOadG were not. AfOadA was affinity purified from inclusion bodies after refolding and AfOadC was affinity purified from the cytosol. Isolated AfOadA catalyzed the carboxyltransfer from [4-14C]-oxaloacetate to the prosthetic biotin group of AfOadC or the corresponding biotin domain of KpOadA. Conversely, the carboxyltransferase domain of KpOadA exhibited catalytic activity not only with its pertinent biotin domain but also with AfOadC.  相似文献   

10.
The properties of monoclonal antibodies (MA) specifically raised against the alpha-subunit of the GTP-binding protein from bovine brain, G0, were studied. The hybridoma clones were found to secrete MA capable to interact with different antigenic sites of G0 alpha. Clone 1D2 MA interacted with the N-terminal domain of G0 alpha. The antigenic sites for clones 3DE. 1H6 and 2E3 MA were localized in the C-terminal domain of the protein molecule. Using clone 1H6 MA, the site of G0 alpha involved in the interaction with the beta gamma complex located in the C-terminal domain of the alpha-subunit, was revealed. It was found that the interaction of the alpha-subunit with the beta gamma complex changed the conformation of the C-terminal fragment of G0 alpha (Mr5000) together with an increase in the alpha-subunit affinity for clone 2E3 MA. It was concluded that the observed conformational changes may be the reason for the increased affinity of the alpha-subunit for the receptor.  相似文献   

11.
We report here a new mode of coupling between the chemical and vectorial reaction explored for the oxaloacetate decarboxylase Na+ pump from Klebsiella pneumoniae. The membrane-bound beta-subunit is responsible for the decarboxylation of carboxybiotin and the coupled translocation of Na+ ions across the membrane. The biotin prosthetic group which is attached to the alpha-subunit becomes carboxylated by carboxyltransfer from oxaloacetate. The two conserved aspartic acid residues within putative membrane-spanning domains of the beta-subunit (Asp149 and Asp203) were exchanged by site-directed mutagenesis. Mutants D149Q and D149E retained oxaloacetate decarboxylase and Na+ transport activities. Mutants D203N and D203E, however, had lost these two activities, but retained the ability to form the carboxybiotin enzyme. Direct participation of Asp203 in the catalysis of the decarboxylation reaction is therefore indicated. In addition, all previous and present data on the enzyme support a model in which the same aspartic acid residue provides a binding site for the metal ion catalysing its movement across the membrane. The model predicts that asp203 in its dissociated form binds Na+ and promotes its translocation, while the protonated residue transfers the proton to the acid-labile carboxybiotin which initiates its decarboxylation. Strong support for the model comes from the observation that Na+ transport by oxaloacetate decarboxylation is accompanied by H+ transport in the opposite direction. The inhibition of oxaloacetate decarboxylation by high Na+ concentrations in a pH-dependent manner is also in agreement with the model.  相似文献   

12.
13.
Transcarboxylase is a 1.2 million Dalton (Da) multienzyme complex from Propionibacterium shermanii that couples two carboxylation reactions, transferring CO(2)(-) from methylmalonyl-CoA to pyruvate to yield propionyl-CoA and oxaloacetate. Crystal structures of the 5S metalloenzyme subunit, which catalyzes the second carboxylation reaction, have been solved in free form and bound to its substrate pyruvate, product oxaloacetate, or inhibitor 2-ketobutyrate. The structure reveals a dimer of beta(8)alpha(8) barrels with an active site cobalt ion coordinated by a carbamylated lysine, except in the oxaloacetate complex in which the product's carboxylate group serves as a ligand instead. 5S and human pyruvate carboxylase (PC), an enzyme crucial to gluconeogenesis, catalyze similar reactions. A 5S-based homology model of the PC carboxyltransferase domain indicates a conserved mechanism and explains the molecular basis of mutations in lactic acidemia. PC disease mutations reproduced in 5S result in a similar decrease in carboxyltransferase activity and crystal structures with altered active sites.  相似文献   

14.
Wang Y  Südhof TC 《Genomics》2003,81(2):126-137
RIMs are synaptic proteins that are essential for normal neurotransmitter release. We now show that while invertebrates contain only a single RIM gene, vertebrates contain four: two large genes encoding RIM1alpha (0.50 Mb) or RIM2alpha, 2beta, and 2gamma (0.50-0.75 Mb) and two smaller genes encoding RIM3gamma (14 kb) or RIM4gamma (55 kb). RIM1alpha and RIM2alpha consist of an N-terminal Zn(2+)-finger domain, central PDZ and C(2)A domains, and a C-terminal C(2)B domain; RIM2beta consists of a short beta-specific sequence followed by central PDZ and C(2)A domains and a C-terminal C(2)B domain; and RIM2gamma, 3gamma, and 4gamma consist of only a C(2)B domain. In the RIM2 gene, RIM2beta and 2gamma are transcribed from internal promoters. alpha- and beta-RIMs are extensively alternatively spliced at three canonical positions, resulting in >200 variants that differ by up to 400 residues. Thus gene duplication, alternative splicing, and multiple promoters diversify a single invertebrate RIM into a large vertebrate protein family. The multiplicity of vertebrate RIMs may serve to fine-tune neurotransmitter release beyond a fundamental, evolutionarily conserved, and common function for RIMs.  相似文献   

15.
Acyl coenzyme A carboxylase (acyl-CoA carboxylase) was purified from Acidianus brierleyi. The purified enzyme showed a unique subunit structure (three subunits with apparent molecular masses of 62, 59, and 20 kDa) and a molecular mass of approximately 540 kDa, indicating an alpha(4)beta(4)gamma(4) subunit structure. The optimum temperature for the enzyme was 60 to 70 degrees C, and the optimum pH was around 6.4 to 6.9. Interestingly, the purified enzyme also had propionyl-CoA carboxylase activity. The apparent K(m) for acetyl-CoA was 0.17 +/- 0.03 mM, with a V(max) of 43.3 +/- 2.8 U mg(-1), and the K(m) for propionyl-CoA was 0.10 +/- 0.008 mM, with a V(max) of 40.8 +/- 1.0 U mg(-1). This result showed that A. brierleyi acyl-CoA carboxylase is a bifunctional enzyme in the modified 3-hydroxypropionate cycle. Both enzymatic activities were inhibited by malonyl-CoA, methymalonyl-CoA, succinyl-CoA, or CoA but not by palmitoyl-CoA. The gene encoding acyl-CoA carboxylase was cloned and characterized. Homology searches of the deduced amino acid sequences of the 62-, 59-, and 20-kDa subunits indicated the presence of functional domains for carboxyltransferase, biotin carboxylase, and biotin carboxyl carrier protein, respectively. Amino acid sequence alignment of acetyl-CoA carboxylases revealed that archaeal acyl-CoA carboxylases are closer to those of Bacteria than to those of Eucarya. The substrate-binding motifs of the enzymes are highly conserved among the three domains. The ATP-binding residues were found in the biotin carboxylase subunit, whereas the conserved biotin-binding site was located on the biotin carboxyl carrier protein. The acyl-CoA-binding site and the carboxybiotin-binding site were found in the carboxyltransferase subunit.  相似文献   

16.
Eukaryotic and archaeal initiation factor 2 (e- and aIF2, respectively) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. The gamma subunit forms the core of the heterotrimer. It resembles elongation factor EF1-A and ensures interaction with Met-tRNA(i)(Met). In the presence of the alpha subunit, which is composed of three domains, the gamma subunit expresses full tRNA binding capacity. This study reports the crystallographic structure of the intact aIF2alpha subunit from the archaeon Pyrococcus abyssi and that of a derived C-terminal fragment containing domains 2 and 3. The obtained structures are compared with those of N-terminal domains 1 and 2 of yeast and human eIF2alpha and with the recently determined NMR structure of human eIF2alpha. We show that the three-domain organization in the alpha subunit is conserved in archaea and eukarya. Domains 1 and 2 form a rigid body linked to a mobile third domain. Sequence comparisons establish that the most conserved regions in the aIF2alpha polypeptide lie at opposite sides of the protein, within domain 1 and domain 3, respectively. These two domains are known to exhibit RNA binding capacities. We propose that domain 3, which is known to glue the alpha subunit onto the gamma subunit, participates in Met-tRNA(i)(Met) binding while domain 1 recognizes either rRNA or mRNA on the ribosome. Thereby, the observed structural mobility within the e- and aIF2alpha molecules would be an integral part of the biological function of this subunit in the heterotrimeric e- and aIF2alphabetagamma factors.  相似文献   

17.
Jockel P  Schmid M  Steuber J  Dimroth P 《Biochemistry》2000,39(9):2307-2315
The oxaloacetate decarboxylase Na+ pump consists of subunits alpha, beta, and gamma, and contains biotin as the prosthetic group. Membrane-bound subunit beta catalyzes the decarboxylation of carboxybiotin coupled to Na+ translocation, and consumes a periplasmically derived proton. Site-directed mutagenesis of conserved amino acids of transmembrane helix VIII indicated that residues N373, G377, S382, and R389 are functionally important. The polar side groups of these amino acids may constitute together with D203 a network of ionizable groups which promotes the translocation of Na+ and the oppositely oriented H+ across the membrane. Evidence is presented that two Na+ ions are bound simultaneously to subunit beta during transport with D203 and S382 acting as binding sites. Sodium ion binding from the cytoplasm to both sites elicits decarboxylation of carboxybiotin, and a conformational switch exposes the bound Na+ ions toward the periplasm. After dissociation of Na+ and binding of H+, the cytoplasmically exposed conformation is regained.  相似文献   

18.
Eukaryotic and archaeal initiation factors 2 (e/aIF2) are heterotrimeric proteins (alphabetagamma) supplying the small subunit of the ribosome with methionylated initiator tRNA. This study reports the crystallographic structure of an aIF2alphagamma heterodimer from Sulfolobus solfataricus bound to Gpp(NH)p-Mg(2+). aIF2gamma is in a closed conformation with the G domain packed on domains II and III. The C-terminal domain of aIF2alpha interacts with domain II of aIF2gamma. Conformations of the two switch regions involved in GTP binding are similar to those encountered in an EF1A:GTP:Phe-tRNA(Phe) complex. Comparison with the EF1A structure suggests that only the gamma subunit of the aIF2alphagamma heterodimer contacts tRNA. Because the alpha subunit markedly reinforces the affinity of tRNA for the gamma subunit, a contribution of the alpha subunit to the switch movements observed in the gamma structure is considered.  相似文献   

19.
Oxalate decarboxylase (OXDC) from the wood-rotting fungus Flammulina velutipes, which catalyzes the conversion of oxalate to formic acid and CO(2) in a single-step reaction, is a duplicated double-domain germin family enzyme. It has agricultural as well as therapeutic importance. We reported earlier the purification and molecular cloning of OXDC. Knowledge-based modeling of the enzyme reveals a beta-barrel core in each of the two domains organized in the hexameric state. A cluster of three histidines suitably juxtaposed to coordinate a divalent metal ion exists in both the domains. Involvement of the two histidine clusters in the catalytic mechanism of the enzyme, possibly through coordination of a metal cofactor, has been hypothesized because all histidine knockout mutants showed total loss of decarboxylase activity. The atomic absorption spectroscopy analysis showed that OXDC contains Mn(2+) at up to 2.5 atoms per subunit. Docking of the oxalate in the active site indicates a similar electrostatic environment around the substrate-binding site in the two domains. We suggest that the histidine coordinated manganese is critical for substrate recognition and is directly involved in the catalysis of the enzyme.  相似文献   

20.
A genomic library of Salmonella typhimurium DNA was constructed in the lambda-phage EMBL3 and screened by immunoblotting for expression of the oxaloacetate decarboxylase alpha-subunit. After subcloning on plasmids the entire sequence of the oxaloacetate decarboxylase was determined. The genes encoding subunits gamma (oadG), alpha (oadA), and beta (oadB) of the decarboxylase are clustered on the chromosome in that order. A typical consensus sequence of a promoter is not found upstream of the oadG gene, but putative ribosome binding regions can be identified before each subunit gene. The amino acid sequences are highly homologous to those of oxaloacetate decarboxylase from Klebsiella pneumoniae with 71% identity between the gamma-subunits, 92% identity between the alpha-subunits, and 93% identity between the beta-subunits. The homology between the corresponding beta-subunits appeared to exist only between the 312 N-terminal amino acid residues. It was shown that a cloning artifact has occurred during DNA sequence determination of the beta-subunit from K. pneumoniae and has led to erroneous results. The sequence of this polypeptide is corrected in the Appendix to this paper. A plasmid encoding the three oad genes and that for the anaerobic citrate carrier (citS) was cloned from the chromosomal DNA and used for sequence determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号