首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Human femoral, internal mammary, and gastroepiploic arteries and saphenous veins are used as bypass grafts for coronary surgery or for reconstruction in arterial occlusive disease. We have characterized the contractile responses of these vessels to various agents that are liberated during cardiac or vascular surgery. In organ baths, U46619 (a stable thromboxane A2 mimetic), norepinephrine, endothelin-1, angiotensin II, and KCl caused concentration-dependent contractions in all vessels tested. Leukotriene C4 did not induce any contraction in the arteries, whereas a contraction was obtained in the saphenous vein rings. U46619 induced the most powerful contraction in all vessels tested. The pD2 values for each agent did not differ among the different vessels. When responses were expressed as a percentage of KCl-induced contraction, the contraction of endothelin-1 (151+/-5%) and leukotriene C4 (43+/-5%) was more significant on saphenous veins than on arteries. In conclusion, thromboxane A2 appears to be the most potent endogenous constricting agent on different human vascular beds. Our second finding is that saphenous veins are more sensitive to contract to leukotriene C4 and endothelin-1 than arteries. These properties may influence early and (or) long-term vein graft patency.  相似文献   

2.
Arginine vasotocin, 0.02--1 nM, increases osmotic water permeability of frog urinary bladder, arginine vasotocin after a simultaneous addition to the mucosal and serosal Ringer solutions rises the water permeability to a lesser degree than on the hormone addition only to the serosal solution. 1 nM remestyp, an agonist of V1-receptors, from the apical membrane decreases the hydroosmotic effect of arginine vasotocin added to the serosal Ringer solution. When added to the mucosal solution, combination of the same concentrations of arginine vasotocin and SR 49059, an antagonist of V--receptors, or desmopressin, agonist of V2-receptor alone, increases the effect of the same concentration of arginine vasotocin added to the serosal solution. 1 nM arginine vasotocin at the luminal membrane increases secretion into the Ringer solution of prostaglandin E, and prostaglandin E1 but not of prostaglandin F2 alpha. The data obtained indicate the presence of the arginine vasotocin receptors responsible for the hydroosmotic effect only in the basolateral membranes, while arginine prostaglandin E, participation is shown in modulation of the arginine vasotocin effect.  相似文献   

3.
Systemic veins have a profound influence on cardiac output in mammals. Venoregulatory mechanisms have not been adequately studied in fish and their existence has been questioned. In the present study, two characteristics of vascular mechanics, compliance and agonist-induced tension development, were investigated in rainbow trout vessels in vitro. Rapid compliance in the anterior cardinal vein and efferent branchial artery was calculated from step-wise changes in the volume-pressure curve of isolated vessel segments. Agonist-induced tension development was examined in four veins; anterior and posterior cardinals, intestinal and duct of Cuvier. Venous compliance was not altered in response to epinephrine, norepinephrine or angiotensin II, while efferent branchial artery compliance was decreased by 10-6 mol·l-1 epinephrine and norepinephrine but not angiotensin II. The ratios of venous to arterial compliance in vessels from two rainbow trout strains were similar (21:1 and 32:1) and consistent with the ratio reported for mammalian viens (24:1). Trout veins contracted in response to agonists in both an, agonist- and vesselspecific manner. The greatest tension per vessel wet weight was produced in anterior cardinal vein. The response pattern of anterior cardinal vein and duct of Cuvier were similar; acetylcholine, arginine vasotocin, epinephrine and norepinephrine, and the thromboxane A2 agonist, U-44,069, produced approximately identical contractions, whereas angiotensin II was virtually ineffective. Conversely, angiotensin II was more potent than epinephrine in posterior cardinal vein. In cumulative dose-response experiments, epinephrine was equipotent in anterior cardinal vein and duct of Cuvier, whereas the latter was less sensitive to acetylcholine. Both atrial natriuretic peptide and sodium nitroprusside relaxed precontracted veins. This is the first study to determine compliance in fish vessels and the contractile nature of different rainbow trout veins. These findings suggest that venous tone and therefore cardiac output in fish may be regulated by neural or humoral mechanisms.Abbreviations ACH acetylcholine - ACV anterior cardinal vein - ANG II salmon asn1-val5 angiotensin II - ANP rat atrial natriuretic peptide - AVT arginine vasotocin - DNR Department of Natural Resources - DOC duct of Cuvier - EBA efferent branchial artery - EC5 threshold dose producing 5% maximal contraction - EC50 dose producing 50% maximal contraction - EPI epinephrine - HI K+ 80 mmol·l-1 - KCl IV, intestinal vein - NEPI norepinephrine - PBS phosphate buffered saline - PCV posterior cardinal vein - SNP sodium nitroprusside - U-44,069 thromboxane A2 agonist  相似文献   

4.
PTHrP has important roles in lung development and function. Here we determined the vasomotor responses of isolated pulmonary arteries and veins of newborn and adult sheep to PTHrP. In vessels constricted with endothelin-1, PTHrP (PTHrP 1-34) caused greater relaxation of veins than of arteries. In both vessel types, relaxation to the peptide was less in adult than in newborn vessels. In newborn lambs, PTHrP-induced relaxation was not affected by endothelium removal, inhibition of eNOS, or inhibition of adenylyl cyclases by SQ-22536. However, relaxation was attenuated by 4-aminopyridine, inhibitor of voltage-dependent potassium channels, in both arteries and veins, and by charybdotoxin, inhibitor of calcium-activated potassium channels, in veins. When vessels were saturated with 8-BrcAMP (3 x 10(-4) M), to eliminate relaxation mediated by endogenous cAMP, PTHrP-induced relaxation was partially attenuated. In vessels treated with 8-BrcAMP (3 x 10(-4) M), 4-aminopyridine but not charybdotoxin inhibited relaxation induced by PTHrP 1-34 in both arteries and veins. Radioimmunoassay showed that, in the presence of a general phosphodiesterase inhibitor, PTHrP caused a concentration-dependent increase in intracellular cAMP content in arteries and veins, which was largely abolished by SQ-22536. Our results demonstrate that PTHrP is a potent vasodilator of pulmonary vessels, with a greater effect in veins than in arteries. Relaxation induced by the peptide contains both cAMP-dependent and -independent components. In both arteries and veins, voltage-dependent potassium channels mediate the response to PTHrP, at least in part, in a cAMP-independent fashion; and in veins, calcium-activated potassium channels may be stimulated by elevated cAMP levels.  相似文献   

5.
Equine laminitis is a crippling condition associated with a variety of systemic diseases. Although it is apparent that the prodromal stages of laminitis involve microvascular dysfunction, little is known regarding the physiology of this vasculature. The aim of the present study was to determine the relative responses of equine laminar arteries and veins to the vasoconstrictor agonists phenylephrine (1 nM-10 microM), 5-HT (1 nM-10 microM), PGF2alpha (1 nM-100 microM), and endothelin-1 (1 pM-1 microM). We have determined that laminar veins were more sensitive, with respect to the concentration of agonist required to initiate a contractile response and to achieve EC(50), for all agonists tested. EC50 values, for veins and arteries, respectively, were 84+/-7 vs. 688+/-42 nM for phenylephrine, 35+/-6 vs. 224+/-13 nM for 5-HT, 496+/-43 nM vs. 3.0+/-0.6 microM for PGF2alpha, and 467+/-38 pM vs. 70.6+/-6.4 nM for endothelin-1. Moreover, when expressed as a percentage of the response to a depolarizing stimulus (80 mM potassium), the maximal contractile response of laminar veins exceeded that for the laminar arteries for each agonist. These results indicate that there may be a predisposition for venoconstriction within the vasculature of the equine digit. While this physiological predisposition for venoconstriction may be important in the regulation of blood flow during exercise, it also may help to explain why laminitis can result from a variety of pathological systemic conditions.  相似文献   

6.
7.
Mechanisms of mechanically induced venous tone and its interaction with the endothelium and key vasoactive neurohormones are not well established. We investigated the contribution of the endothelium, l-type voltage-operated calcium channels (L-VOCCs), and PKC and Rho kinase to myogenic reactivity in mesenteric vessels exposed to increasing transmural pressure. The interaction of myogenic reactivity with norepinephrine (NE) and endothelin-1 (ET-1) was also investigated. Pressure myography was used to study isolated, cannulated, third-order rat mesenteric small veins and arteries. NE and ET-1 concentration response curves were constructed at low, intermediate, and high transmural pressures. Myogenic reactivity was not altered by nitric oxide synthase inhibition with N(ω)-nitro-L-arginine (L-NNA; 100 μM) or endothelium removal in both vessels. L-VOCCs blockade (nifedipine, 1 μM) completely abolished arterial tone, while only partially reducing venous tone. PKC (chelerythrine, 2.5 μM) and Rho kinase (Y27632, 3 μM) inhibitors largely abolished venous and arterial myogenic reactivity. There was no significant difference in the sensitivity of NE or ET-1-induced contractions within vessels. However, veins were more sensitive to NE and ET-1 when compared with corresponding arteries at low, intermediate, and high transmural pressures, respectively. These results suggest that 1) myogenic factors are important contributors to net venous tone in mesenteric veins; 2) PKC and Rho activation are important in myogenic reactivity in both vessels, while l-VOCCs play a limited role in the veins vs. the arteries, and the endothelium does not appear to modulate myogenic reactivity in either vessel type; and 3) mesenteric veins maintain an enhanced sensitivity to NE and ET-1 compared with the arteries when studied under conditions of changing transmural distending pressure.  相似文献   

8.
Cyclic GMP-dependent protein kinase (PKG) plays an important role in regulating pulmonary vasomotor tone in the perinatal period. In this study, we tested the hypothesis that a change in oxygen tension affects PKG-mediated pulmonary vasodilation. Isolated intrapulmonary arteries and veins of near-term fetal lambs were first incubated for 4 h under hypoxic and normoxic conditions (Po2 of 30 and 140 mmHg, respectively) and then contracted with endothelin-1. 8-Bromoguanosine 3',5'-cyclic monophosphate (8-BrcGMP), a cell membrane-permeable analog of cGMP, induced a greater relaxation in vessels incubated in normoxia than in hypoxia. beta-Phenyl-1,N2-etheno-8-bromoguanosine-3',5'-cyclic monophosphorothioate, Rp isomer (Rp-8-Br-PET-cGMPS), a selective inhibitor of PKG, attenuated relaxation induced by 8-BrcGMP (10-4 and 3 x 10-4 M). In the presence of Rp-8-Br-PET-cGMPS, the differential responses to 8-BrcGMP between hypoxia and normoxia treatment were abolished in veins but not in arteries. cGMP-stimulated PKG activity was present in arteries but not in veins after 4 h of hypoxia. Both vessel types showed significant increase in cGMP-stimulated PKG activity after 4 h of normoxia. PKG protein (Western blot analysis) and PKG mRNA levels (quantitative RT-PCR) were greater in veins but not in arteries after 4-h exposure to normoxia vs. hypoxia. These results demonstrate that oxygen augments cGMP-mediated vasodilation of fetal pulmonary arteries and veins. Furthermore, the effect of oxygen on response of the veins to cGMP is due to an increase in the activity, protein level, and mRNA of PKG.  相似文献   

9.
M Kawano  N Mori 《Prostaglandins》1983,26(4):645-662
Prostacyclin-like material producing activity of umbilical, placental and uterine vessels was studied. Umbilical arteries and veins were separated at sites 10-15cm and 1-2cm from insertion of the umbilical cord to the placenta. Placental arteries and veins were prepared from the first, second and third branches on the chorionic plate. Uterine vessels were obtained at abdominal hysterectomy. After incubation of each specimen in Tris buffer 1 ml (pH8.5, 0.5M) for 30 min at room temperature, the inhibitory effect of the medium on ADP induced platelet aggregation was measured and the prostacyclin-like material was quantified. These procedures were repeated consecutively four times in total for each specimen. Prostacyclin-like material production rate and its total production were calculated. In total prostacyclin-like material production, umbilical arteries and veins were much higher than placental arteries and veins respectively (p less than 0.001), but there was no significant difference between placental and uterine vessels. These results showed that prostacyclin-like material producing activity of blood vessels declined remarkably at the transitive region from umbilical to placental vessels. It seems that this distribution of vascular prostacyclin-like material producibility in the fetoplacental vascular system correlates with that of vascular reactivity to prostacyclin.  相似文献   

10.
The roles of Rho kinase (ROCK) and cGMP-dependent protein kinase (PKG) in cGMP-mediated relaxation of fetal pulmonary veins exposed to chronic hypoxia (CH) were investigated. Fourth generation pulmonary veins were dissected from near-term fetuses ( approximately 140 days of gestation) delivered from ewes exposed to chronic high altitude hypoxia for approximately 110 days (CH) and from control ewes. After constriction with endothelin-1, 8-bromoguanosine 3',5'-cyclic monophosphate (8-Br-cGMP) caused a similar relaxation of both control and CH vessels. Rp-8-Br-PET-cGMPS (a PKG inhibitor) inhibited whereas Y-27632 (a ROCK inhibitor) augmented relaxation of control veins to 8-Br-cGMP. These effects were significantly diminished in CH veins. PKG protein expression and activity were greater whereas ROCK protein expression and activity were less in CH vessels compared with controls. Phosphorylation of threonine 696 (ROCK substrate) and serine 695 (PKG substrate) of the regulatory myosin phosphatase targeting subunit MYPT1 of myosin light chain (MLC) phosphatase was stimulated to a lesser extent in CH than in control veins by endothelin-1 (ROCK stimulant) and 8-Br-cGMP (PKG stimulant), respectively. The phosphorylation and dephosphorylation of MLC caused by endothelin-1 and 8-Br-cGMP, respectively, were less in CH veins than in controls. These results suggest that CH in utero upregulates PKG activity but attenuates PKG action in fetal pulmonary veins. These effects are offset by the diminished ROCK action on MYPT1 and MLC and thus lead to an unaltered response to cGMP.  相似文献   

11.
Natriuretic peptide receptors in the central vasculature of the toad, Bufo marinus, were characterized using autoradiographical, molecular, and physiological techniques. Specific 125I-rat ANP binding sites were present in the carotid and pulmonary arteries, the lateral aorta, the pre- and post-cava, and the jugular vein, and generally occurred in each layer of the blood vessel. The 125I-rat ANP binding was partially displaced by the specific natriuretic peptide receptor C ligand, C-ANF, which indicates the presence of two types of natriuretic peptide receptors in the blood vessels. This was confirmed by a RT-PCR study, which demonstrated that guanylyl cyclase receptor (NPR-GC) and NPR-C mRNAs are expressed in arteries and veins. An in vitro guanylyl cyclase assay showed that frog ANP stimulated the production of cGMP in arterial membrane fractions. Physiological recordings from isolated segments of the carotid and pulmonary arteries and the lateral aorta, which had been pre-constricted with arginine vasotocin, showed that rat ANP, frog ANP and porcine CNP relaxed the vascular smooth muscle with relatively similar potency. Together, the data show that the central vasculature contains two types of natriuretic peptide receptors (NPR-C and NPR-GC) and that the vasculature is a target for ANP and CNP.  相似文献   

12.
Apparent pressor receptor dissociation rate constants for arginine vasopressin, arginine vasotocin, oxytocin, oxypressin, and [1-deamino, 9-D-alanineamide]arginine vasopressin were estimated by the following method. Two minutes after injection of a moderate dose of agonist into urethane-anesthetized rats prepared for recording mean blood pressure, a large dose of inhibitor was injected. Under these conditions, in the first few moments after inhibitor injection, there should be no rebinding of the agonist after it dissociates, because vacant receptors should be immediately occupied by inhibitor. The rate of the blood pressure drop at the initiation of inhibition was calculated and used as an estimate of the dissociation rate of the agonist. Apparent dissociation rate constants thus estimated were 1.1, 1.1, 6.9, 5.8, and 13.9 min-1 for arginine vasopressin, arginine vasotocin, oxytocin, oxypressin, and [1-deamino, 9-D-alanineamide]arginine vasopressin, respectively. These rate constants were inversely related to the pressor potencies (435, 250, 5, 3, and 0.7 U/mg, respectively) of these five compounds. Such a relationship is to be expected if decreased potency is in part due to a faster "off" rate from pressor receptors.  相似文献   

13.
The effects of vasoactive agonists on systemic blood vessels were examined with respect to anatomical location and gravity acclimation in the semi-arboreal snake, Elaphe Obsoleta. Major blood vessels were reactive to putative neurotransmitters, hormones or local factors in vessel specific patterns. Catecholamines, adenosine triphosphate, histamine and high potassium (80 mM) stimulated significantly greater tension per unit vessel mass in posterior than anterior arteries. Anterior vessels were significantly more sensitive to catecholamines than midbody and posterior vessels. Angiotensin II stimulated significantly greater tension in carotid artery than in midbody and posterior dorsal aorta. Arginine vasotocin strongly contracted the left and right aortic arches and anterior dorsal aorta. Veins were strongly contracted by catecholamines, high potassium and angiotensin II, but less so by adenosine triphosphate, arginine vasotocin and histamine. Precontracted vessels were relaxed by acetylcholine and sodium nitroprusside, but not by atrial natriuretic peptide or bradykinin. Chronic exposure of snakes to intermittent hypergravity stress (+1.5 Gz at tail) did not affect the majority of vessel responses. These data demonstrate that in vitro tension correlates with known patterns of sympathetic innervation and suggest that catecholamines, as well as other agonists, are important in mediating vascular responses to gravitational stresses in snakes.Abbreviations ACH acetylcholine - ADA anterior dorsal aorta - ANG II salmon asn1-val5-angiotensin II - ANP rat ile26-atrial natriuretic peptide - ATP adenosine triphosphate - AVT arginine vasotocin - BK human bradykinin - BL total body length - CA carotid artery - CONT control - EC 50 effective concentration producing 50% maximal response - EPI epinephrine - + G z earth's gravity force - HI-G high gravity acclimation - HI K + 80 mM high potassium - JV jugular vein - LAA left aortic arch - MDA midbody dorsal aorta - MPV midbody portal vein - MS Mackenzie's solution - NEPI norepinephrine - pD 2 log EC50 - PDA posterior dorsal aorta - PPV posterior portal vein - RAA right aortic arch - SNP sodium nitroprusside  相似文献   

14.
Cerebral blood vessels are frequently damaged in traumatic brain injury. Mechanical properties of fresh human cerebral vessels obtained through surgeries have been reported. Because surgical sources of human specimens are rare and produce a limited amount of material, we sought to compare the properties of more readily available cerebral arteries and veins obtained from cadavers to fresh vessel data. Additionally, because the previous study was limited to small vessels available in surgery, it was unknown how generally applicable the results were to larger cerebral arteries and veins. In the current study, large and small cerebral vessels from autopsy were stretched axially. Data from these and similar tests on fresh vessels were combined to determine the significance of source and size on mechanical properties. Structural comparisons of histological samples were additionally utilized to characterize differences. Results indicate that specimens from autopsy and surgery behave similarly except that vessels from autopsy tend to be less extensible. While tests on large vessels were limited, small arteries obtained from autopsy tended to be slightly stiffer than large arteries. In contrast, bridging veins from cadavers were typically stiffer and stretched less before structural failure than cortical veins from the same source. These effects are, however, secondary to differences identified between arteries and veins in the previous study.  相似文献   

15.
This study examined sensory nerves associated with mesenteric arteries and veins in sham and deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Reactivity of arteries and veins to substances released from sensory nerves was also studied in vitro using computer-assisted video microscopy. Co-localization of substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactivity (ir) was used to evaluate perivascular sensory nerves. Radioimmunoassay was used to quantify SP- and CGRP-ir content. Immunohistochemical studies revealed a plexus of SP/CGRP-ir nerves associated with arteries and veins. The intensity of SP-ir, but not CGRP-ir labeling was greater in arteries and veins from DOCA-salt compared to sham rats. RIA measurements revealed that the CGRP-ir content of arteries and veins was higher than the SP-ir content but there was a significant increase in SP-ir, but not CGRP-ir, content in arteries and veins from DOCA-salt rats. SP (0.03-1 microM) contracted veins and the NK-3 receptor agonist, senktide, mimicked this effect. There were no differences in SP or senktide reactivity of veins from sham or DOCA-salt rats. SP, but not senktide, relaxed KCl (40 mM) preconstricted arteries. CGRP (0.3 microM), acetylcholine (10 microM) and capsaicin (1 microM) relaxed KCl-preconstricted arteries and veins. The NK-1 receptor agonist, substance P methyl ester relaxed arteries but not veins. These data indicate that DOCA-salt hypertension is associated with upregulation of SP content in perivascular nerves. NK-3 receptors mediate venoconstriction which is unchanged in DOCA-salt hypertension. Increased release of SP from perivenous nerves might contribute to the increased venomotor tone in DOCA-salt hypertension.  相似文献   

16.
The effects were examined of endothelin-1 and U46619 on the responses to perivascular nerve stimulation of the simultaneously perfused arterial and venous vessels of the superior mesenteric arterial bed of the rat. Stimulation of the nerves at 4-16 Hz for 30 s caused frequency dependent constrictions of both the arterial and venous vessels similar to those produced by bolus doses of exogenous noradrenaline (0.1-10 nmol). Infusion of either endothelin-1 (0.1 nM) or U46619 (1-3 nM) caused small (less than or equal to 5 mmHg) increases in arterial and venous perfusion pressures and selectively potentiated the venous, but not arterial, responses to nerve stimulation. Conversely, endothelin-1 and U46619 potentiated the responses of both the arterial and venous vessels to exogenous noradrenaline. Thus, as reported previously for the arterial vessels of the rat mesentery, the isolated venous vessels constrict to perivascular nerve stimulation in a frequency dependent manner. In addition, endothelin-1 and U46619 potentiate selectively the effects of nerve stimulation on the veins.  相似文献   

17.
Vasospasm is one of the main causes of skin ischemic necrosis in cutaneous and musculocutaneous flap surgery, but the pathogenic mechanism is unclear. We planned to test the hypothesis derived from clinical impression that veins are more susceptible to vasospasm than arteries in flap surgery and, once established, that venous vasospasm is difficult to resolve and more detrimental than arterial vasospasm. To this end, we investigated the differences in sensitivity to vasoconstrictors and vasodilators between the human musculocutaneous perforator (MCP) artery and vein by measuring the isometric tension of arterial and venous rings suspended in organ chambers. Vascular contraction was expressed as a percentage of the tension induced by 50 mM KCl. Relaxation was expressed as a percentage of contraction induced by a submaximal concentration (3 x 10(-9) M) of endothelin-1 (ET-1). We observed that the vasoconstrictor potency of norepinephrine was significantly higher in the MCP vein than in the MCP artery. The vasoconstrictor potency of ET-1 and the thromboxane A(2) mimetic U-46619 were similar in the MCP vein and artery, but the maximal contraction induced by ET-1 and U-46619 was significantly higher in the MCP vein than in the MCP artery. On the other hand, the MCP vein was less sensitive than the MCP artery to the relaxation effect of nitroglycerin, nifedipine, and lidocaine. These differences between the human MCP artery and vein in response to vasoactive agents lend support to the clinical impression in flap surgery that veins appear to be more susceptible to vasospasm than arteries and venous vasospasm seems to be more difficult to resolve than arterial vasospasm in cutaneous and musculocutaneous flap surgery.  相似文献   

18.
Mesenteric arteries and veins are densely innervated by sympathetic nerves and are crucial in the regulation of peripheral resistance and capacitance, respectively, thus, in the control of blood pressure. Presynaptic adenosine receptors are involved in vascular tonus regulation, by modulating noradrenaline release from vascular postganglionic sympathetic nerve endings. Some studies also suggest that adenosine receptors (AR) may have a role in hypertension. We aim at investigating the role of presynaptic adenosine receptors in mesenteric vessels and establish a relationship between their effects (in mesenteric vessels) and hypertension, using the spontaneously hypertensive rats (SHR) as a model of hypertension. Adenosine receptor-mediated modulation of noradrenaline release was investigated through the effects of selective agonists and antagonists on electrically-evoked [3H]-noradrenaline overflow. CPA (A1AR selective agonist: 1–100 nM) inhibited tritium overflow, but the inhibition was lower in SHR mesenteric vessels. IB-MECA (A3AR selective agonist: 1–100 nM) also inhibited tritium overflow but only in WKY mesenteric veins. CGS 21680 (A2AAR selective agonist: up to 100 nM) failed to facilitate noradrenaline release in mesenteric veins, from both strains, but induced a similar facilitation in the mesenteric arteries. NECA (non-selective AR agonist: 1, 3 and 10 μM), in the presence of A1 (DPCPX, 20 nM) and A3 (MRS 1523, 1 μM) AR selective antagonists, failed to change tritium overflow. In summary, the modulatory effects mediated by presynaptic adenosine receptors were characterized, for the first time, in mesenteric vessels: a major inhibition exerted by the A1 subtype in both vessels; a slight inhibition mediated by A3 receptors in mesenteric vein; a facilitation mediated by A2A receptors only in mesenteric artery (from both strains). The less efficient prejunctional adenosine receptor mediated inhibitory effects can contribute to an increase of noradrenaline in the synaptic cleft (both in arteries and veins), which might conduce to increased vascular reactivity.  相似文献   

19.
Prostacyclin-like material producing activity of umbilical, placental and uterine vessels was studied.Umbilical arteries and veins were separated at sites 10–15 cm and 1–2 cm from insertion of the umbilical cord to the placenta. Placental arteries and veins were prepared from the first, second and third branches on the chorionic plate. Uterine vessels were obtained at abdominal hysterectomy.After incubation of each specimen in Tris buffer 1 ml (pH8.5, 0.5M) for 30 min at room temperature, the inhibitory effect of the medium on ADP induced platelet aggregation was measured and the prostacyclin-like material was quantified. These procedures were repeated consecutively four times in total for each specimen. Prostacyclin-like material production rate and its total production were calculated.In total prostacyclin-like material production, umbilical arteries and veins were much higher than placental arteries and veins respectively (p<0.001), but there was no significant difference between placental and uterine vessels.These results showed that prostacyclin-like material producing activity of blood vessels declined remarkably at the transitive region from umbilical to placental vessels. It seems that this distribution of vascular prostacyclin-like material producibility in the fetoplacental vascular system correlates with that of vascular reactivity to prostacyclin.  相似文献   

20.
Transient receptor potential (TRP) cation channels are emerging in vascular biology. In particular, the expression of the capsaicin receptor (TRPV1) was reported in vascular smooth muscle cells. This study characterized the arteriolar TRPV1 function and expression in the rat. TRPV1 mRNA was expressed in various vascular beds. Six commercially available antibodies were tested for TRPV1 specificity. Two of them were specific (immunostaining was abolished by blocking peptides) for neuronal TRPV1 and one recognized vascular TRPV1. TRPV1 was expressed in blood vessels in the skeletal muscle, mesenteric and skin tissues, as well as in the aorta and carotid arteries. TRPV1 expression was found to be regulated at the level of individual blood vessels, where some vessels expressed, while others did not express TRPV1 in the same tissue sections. Capsaicin (a TRPV1 agonist) evoked constrictions in skeletal muscle arteries and in the carotid artery, but had no effect on the femoral and mesenteric arteries or the aorta. In blood vessels, TRPV1 expression was detected in most of the large arteries, but there were striking differences at level of the small arteries. TRPV1 activity was suppressed in some isolated arteries. This tightly regulated expression and function suggests a physiological role for vascular TRPV1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号