首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
The abnormal accumulation of Cu2+ is closely correlated with the incidence of different diseases, such as Alzheimer's disease and Wilson disease. To study in vivo functions of Cu2+ will lead to a better understanding of the nature of these diseases. In the present study, effect of Cu2+ on histone acetylation was investigated in human hepatoma cells. Exposure of cells to Cu2+ resulted in a significant decrease of histone acetylation, as indicated by the decrease of the overall histone acetylation and the decrease of histone H3 and H4 acetylation. Since histone acetyltransferase (HAT) and histone deacetylase (HDAC) are the enzymes controlled the state of histone acetylation in vivo, we tested their contribution to the inhibition of Cu2+ on histone acetylation. One hundred nanomolar trichostatin A, the specific inhibitor of HDAC, did not attenuate the inhibitory effect of Cu2+ on histone acetylation. Combined with that Cu2+ showed no effect on the in vitro activity of HDAC, these results led to the conclusion that it is HAT, but not HDAC that is involved in Cu2+ -induced histone hypoacetylation. This conclusion was confirmed by the facts that (1) Cu2+ significantly inhibited the in vitro activity of HAT, (2) Cu2+ -treated cells possessed a lower HAT activity than control cells, and (3) 50 or 100 microM bathocuproine disulfonate, a chelator of Cu2+, significantly attenuated the inhibition of Cu2+ on HAT activity and histone acetylation in the similar pattern. Combined with that Cu2+ showed no or obvious cytotoxicity at 100 or 200 microM in human hepatoma cells, and the previous study that Cu2+ inhibits the histone H4 acetylation of yeast cells at nontoxic or toxic levels, the data presented here suggest that inhibiting histone acetylation is probably one general in vivo function of Cu2+, where HAT is its molecular target.  相似文献   

7.
Histone lysine acetylation, normally associated with euchromatin and active genes, is regulated by different families of histone acetyltransferases (HATs). A single Plasmodium falciparum MYST (PfMYST) HAT was expressed as a long and a short version in intraerythrocytic stages. Whereas the recombinant PfMYST expressed in prokaryotes and insect cells did not show HAT activity, recombinant PfMYST purified from the parasites exhibited a predilection to acetylate histone H4 in vitro at K5, K8, K12 and K16. Tagging PfMYST with the green fluorescent protein at the C‐terminus showed that PfMYST protein was localized in both the nucleus and cytoplasm. Consistent with the importance of H4 acetylation in var gene expression, PfMYST was recruited to the active var promoter. Attempts to disrupt PfMYST were not successful, suggesting that PfMYST is essential for asexual intraerythrocytic growth. However, overexpression of the long, active or a truncated, non‐active version of PfMYST by stable integration of the expression cassette in the parasite genome resulted in changes of H4 acetylation and cell cycle progression. Furthermore, parasites with PfMYST overexpression showed changes in sensitivity to DNA‐damaging agents. Collectively, this study showed that PfMYST plays important roles in cellular processes such as gene activation, cell cycle control and DNA repair.  相似文献   

8.
9.
Histone acetyltransferases (HATs) are a class of enzymes that participate in modulating chromatin structure and gene expression. Altered HAT activity has been implicated in a number of diseases, yet little is known about the regulation of HATs. In this study, we report that glycosaminoglycans (GAGs) are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and heparan sulfate proteoglycans (HSPGs) being the most potent inhibitors. The mechanism of inhibition by heparin was investigated. The ability of heparin to inhibit HAT activity was in part dependent upon its size and structure, as small heparin-derived oligosaccharides (>8 sugars) and N-desulfated or O-desulfated heparin showed reduced inhibitory activity. Heparin was shown to bind to pCAF; and enzyme assays indicated that heparin shows the characteristics of a competitive-like inhibitor causing an approximately 50-fold increase in the apparent Km of pCAF for histone H4. HSPGs isolated from corneal and pulmonary fibroblasts inhibited HAT activity with similar effectiveness as heparin. As evidence that endogenous GAGs might be involved in modulating histone acetylation, the direct addition of heparin to pulmonary fibroblasts resulted in an approximately 50% reduction of histone H3 acetylation after 6 h of treatment. In addition, Chinese hamster ovary cells deficient in GAG synthesis showed increased levels of acetylated histone H3 compared to wild-type parent cells. GAGs represent a new class of HAT inhibitors that might participate in modulating cell function by regulating histone acetylation.  相似文献   

10.
11.
12.
13.
14.
15.
Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. We show that in addition to its known H3-K56 acetylation activity, Rtt109 is also an H3-K9 HAT, and we show that Rtt109 and Gcn5 are the only H3-K9 HATs in vivo. Rtt109's H3-K9 acetylation activity in vitro is enhanced strongly by Vps75. Another histone chaperone, Asf1, and Vps75 are both required for acetylation of lysine 9 on H3 (H3-K9ac) in vivo by Rtt109, whereas H3-K56ac in vivo requires only Asf1. Asf1 also physically interacts with the nuclear Hat1/Hat2/Hif1 complex that acetylates H4-K5 and H4-K12. We suggest Asf1 is capable of assembling into chromatin H3-H4 dimers diacetylated on both H4-K5/12 and H3-K9/56.  相似文献   

16.
We have investigated the ability of dexamethasone to regulate interleukin-1beta (IL-1beta)-induced gene expression, histone acetyltransferase (HAT) and histone deacetylase (HDAC) activity. Low concentrations of dexamethasone (10(-10) M) repress IL-1beta-stimulated granulocyte-macrophage colony-stimulating factor (GM-CSF) expression and fail to stimulate secretory leukocyte proteinase inhibitor expression. Dexamethasone (10(-7) M) and IL-1beta (1 ng/ml) both stimulated HAT activity but showed a different pattern of histone H4 acetylation. Dexamethasone targeted lysines K5 and K16, whereas IL-1beta targeted K8 and K12. Low concentrations of dexamethasone (10(-10) M), which do not transactivate, repressed IL-1beta-stimulated K8 and K12 acetylation. Using chromatin immunoprecipitation assays, we show that dexamethasone inhibits IL-1beta-enhanced acetylated K8-associated GM-CSF promoter enrichment in a concentration-dependent manner. Neither IL-1beta nor dexamethasone elicited any GM-CSF promoter association at acetylated K5 residues. Furthermore, we show that GR acts both as a direct inhibitor of CREB binding protein (CBP)-associated HAT activity and also by recruiting HDAC2 to the p65-CBP HAT complex. This action does not involve de novo synthesis of HDAC protein or altered expression of CBP or p300/CBP-associated factor. This mechanism for glucocorticoid repression is novel and establishes that inhibition of histone acetylation is an additional level of control of inflammatory gene expression. This further suggests that pharmacological manipulation of of specific histone acetylation status is a potentially useful approach for the treatment of inflammatory diseases.  相似文献   

17.
18.
19.
20.
Xu F  Zhang K  Grunstein M 《Cell》2005,121(3):375-385
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号