首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AMP-deaminase from rat skeletal muscle was purified by affinity chromatography on phosphocellulose and gel-filtration on Sephadex G-200. It was established that disulfide bridges and hydrogen bonds were not essential for stability of enzyme oligomeric structure. The dimeric structure of enzyme subunit with Mr 76 kDa (S1) was detected by means of PAGE in the presence of SDS: besides the S1 there were also exhibited two additional bands with Mr 42 (S2) and 33 (S3) kDa. Repeated SDS-PAGE of S1 has revealed the same three protein bands. These results indicate the possibility of dissociation of S1-subunit into two subunits with close Mr values.  相似文献   

2.
AMP-deaminase from human uterine smooth muscle has been isolated, and properties of the enzyme were characterized. At pH 7.0, and in the presence of 100 mM potassium chloride the enzyme manifests a distinctly sigmoidal type of kinetics, with S0.5 parameter value about 12 mM. 1 mM ATP strongly activates the enzyme, and diminishes the value of S0.5 to 1.2 mM. In contrast to that 2.5 mM orthophosphate slightly inhibits the activity of AMP-deaminase studied and increases the S0.5 to about 14 mM. Similarly to ATP, orthophosphate does not influence the maximum velocity of the reaction. Electrophoresis in the presence of sodium dodecyl sulphate revealed that the molecular weight of human smooth muscle AMP-deaminase subunit is close to 37 kDa.  相似文献   

3.
When frozen plasma membranes isolated from maize seedling roots are thawed, a significant portion of GTP-binding activity goes into solution. The GTP-binding protein was purified by ion exchange chromatography on Mono-Q and gel filtration on Superose 6. Its molecular weight was estimated at 61 kDa by gel filtration. The same molecular weight was obtained upon solubilization of the GTP-binding protein with cholic acid followed by gel filtration in the presence of this detergent. SDS-PAGE demonstrated that the isolated GTP-binding protein consists of two types of subunit of molecular weights 27 kDa and 34 kDa.  相似文献   

4.
A cyclic AMP dependent protein kinase (PKA), its regulatory (R) and catalytic (C) subunits were purified to homogeneity from soluble extract of Microsporum gypseum. Purified enzyme showed a final specific activity of 277.9 nmol phosphate transferred min(-1) mg protein(-1) with kemptide as substrate. The enzyme preparation showed two bands with molecular masses of 76 kDa and 45 kDa on sodium dodecyl polyacrylamide gel electrophoresis. The 76 kDa subunit was found to be the regulatory (R) subunit of PKA holoenzyme as determined by its immunoreactivity and the isoelectric point of this subunit was 3.98. The 45 kDa subunit was found to be the catalytic (C) subunit by its immunoreactivity and phosphotransferase activity. Gel filtration using Sepharose CL-6B revealed the molecular mass of PKA holoenzyme to be 240 kDa, compatible with its tetrameric structure, consisting of two regulatory subunits (76 kDa) and two catalytic subunits (45 kDa). The specificity of enzyme towards protein acceptors in decreasing order of phosphorylation was found to be kemptide, casein, syntide and histone IIs. Purified enzyme had apparent K(m) values of 71 microM and 25 microM for ATP and kemptide, respectively. Phosphorylation was strongly inhibited by mammalian PKA inhibitor (PKI) but not by inhibitors of other protein kinases. The PKA showed maximum activity at pH 7.0 and enzyme activity was inhibited in the presence of N-ethylmaleimide (NEM) which shows the involvement of sulfhydryl groups for the activity of PKA. PKA phosphorylated a number of endogenous proteins suggesting the multifunctional role of cAMP dependent protein kinase in M. gypseum. Further work is under progress to identify the natural substrates of this enzyme through which it may regulate the enzymes involved in phospholipid metabolism.  相似文献   

5.
Human follicle-stimulating hormone (hFSH) was acylated with N-hydroxysuccinimidyl-4-azidobenzoate (HSAB) and radioiodinated (55 microCi/micrograms) for use as a photoaffinity probe to investigate the subunit structure of the FSH receptor in calf testis. After incubation with the photoaffinity probe and photolysis with UV light, the cross-linked hormone-receptor complex was solubilized from the membrane and subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of the reducing agent dithiothreitol. Autoradiography of the polyacrylamide gels revealed two major bands, 64 kDa and 84 kDa. These were equivalent in molecular mass to those observed in a previous study (Branca, A. A., Sluss, P. M., Smith, A. A., and Reichert, L. E., Jr. (1985) J. Biol. Chem. 260, 9988-9993) in which performed hormone-receptor complexes were solubilized with detergent prior to formation of covalent cross-linkages through the use of homobifunctional cross-linking reagents. Reduction with dithiothreitol resulted in the loss of radioactivity from the 84-kDa band with a concomitant increase in the intensity of the 64-kDa band. Since dithiothreitol increases the dissociation of intact radioiodinated azidobenzoyl-FSH into subunits, it is suggested that the conversion of the 84-kDa band to the 64-kDa band by dithiothreitol is due to the loss of non-cross-linked hFSH subunit from the 84-kDa band and that the two bands observed after photoaffinity labeling arise from covalent bond formation between hFSH and a receptor subunit having a relative molecular weight (Mr) of 48,000. In addition to the predominant photolabeling of the receptor to yield the 64-kDa and 84-kDa bands, several other, less intense bands (54 kDa, 76 kDa, 97 kDa, and 116 kDa) were also consistently observed on autoradiographs. The appearance of all bands, however, was inhibited by the inclusion of unlabeled hFSH in the initial binding incubation mixtures. The results of this study indicate that the calf testis FSH receptor has a multimeric structure containing at least one 48-kDa subunit and suggest the presence of other nonidentical receptor subunit proteins.  相似文献   

6.
In order to characterize the CCK receptor in guinea-pig pancreas, iodinated CCK-39 was bound to pancreatic membranes and the reversible complex was solubilized using various non-denaturing detergents. In term of recovery of ligand stabilized receptors, the relative potencies were Zwittergent 3-14 greater than CHAPS = CHAPSO greater than digitonin greater than MEGA 10 greater than octyl beta-D-glucopyranoside. The stability of receptor complexes was increased by glycerol. Chromatographic analysis revealed that digitonin was the most efficient detergent for disaggregation of CCK receptor complex since it yielded a 76 kDa component in addition to the large components obtained after solubilization with CHAPS and Zwittergent. Furthermore, CCK receptors were covalently labelled using dissuccinimidyl suberate or UV irradiation of labelled membranes by photoactivable radioiodinated CCK-39 and subsequently solubilized by CHAPS + SDS or by SDS alone. A predominant molecule was characterized by chromatography (76 kDa) and SDS-PAGE (89 kDa). In addition to this component, other components having molecular masses of 130-150 kDa, 57 kDa and 40 kDa were detected by SDS-PAGE. They correspond to minor bands. These bands, except the 40 kDa band, were protected from covalent labelling by the presence of CCK-39 (10(-6) M) during initial incubation. Reduction under beta-mercaptoethanol mainly resulted in the decrease of high molecular weight aggregates (Mr greater than 200 kDa). We concluded that for a given detergent a specific molecular weight pattern of solubilized CCK receptor complex is achieved. The minimal component had a molecular mass of 71-84 kDa according to the method of biochemical analysis used.  相似文献   

7.
黄鳝血清和体表粘液蛋白的比较研究   总被引:1,自引:0,他引:1  
本文用反相高效液相色谱法测定了黄鳝血清和体表粘液蛋白的氨基酸种类和含量,比较了二者的氨基酸组成变化。结果表明:二者都含有17种氨基酸,血清的氨基酸总量为397.11mg/l00ml,体表粘液蛋白的氨基酸总量为259.29mg/l00m1,血清与粘液蛋白中氨基酸含量差异最大的是蛋氨酸、半胱氨酸。应用SDS—PAGE分析和比较了血清和体表粘液蛋白的分子量大小及特有区带效,黄鳝血清与体表粘液蛋白分子量相同的蛋白区带数为2条,其分子量大小分别为19.5kDa、96.0kDa。其中血清的特有蛋白带为18条,体表粘液的特有蛋白带为8条。此外,对二者的相关性和体表粘液特异性的免疫机制作了探讨。  相似文献   

8.
AMP-deaminase from human liver was purified by two-step phosphocellulose chromatography, and SDS-PAG electrophoresis of the most active enzyme fraction eluted has been performed. The largest of the protein fragments revealed had a size (92 kDa) of an apparent full-size enzyme subunit, and reacted positively with antibodies produced against specific human ampd2 gene product. Three-day storage at cold room temperature modified significantly the electrophoretical pattern of the enzyme, evidencing continuous and progressive degradation of its structure. This is a first report evidencing the presence of apparent full-size form of human liver AMP-deaminase in preparation obtained from endogenous source.  相似文献   

9.
Pseudomonas syringae pv. ciccaronei strain NCPPB2355 was found to produce a bacteriocin inhibitory against strains of Ps. syringae subsp. savastanoi , the causal agent of olive knot disease. Treatments with mitomycin C did not substantially increase the bacteriocin titre in culture. The purification of the bacteriocin obtained by ammonium sulphate precipitation of culture supernatant fluid, membrane ultrafiltration, gel filtration and preparative PAGE, led to the isolation of a high molecular weight proteinaceous substance. The bacteriocin analysed by SDS-PAGE revealed three protein bands with molecular weights of 76, 63 and 45 kDa, respectively. The bacteriocin was sensitive to heat and proteolytic enzymes, was resistant to non-polar organic solvents and was active between pH 5·0–7·0. Plasmid-DNA analysis of Ps. syringae ciccaronei revealed the presence of 18 plasmids; bacteriocin-negative variants could not be obtained by cure experiments.  相似文献   

10.
Lysosomal neuraminidase and beta-galactosidase are present in a complex together with a 32-kDa protective protein. This complex has been purified and the different components have been dissociated using potassium isothiocyanate (KSCN) treatment. beta-Galactosidase remains catalytically active, but neuraminidase loses its activity upon dissociation. The inactive dissociated neuraminidase was purified by removing the remaining non-dissociated beta-galactosidase/protective protein complex using beta-galactosidase-specific affinity chromatography. The dissociated neuraminidase material shows two major polypeptides on SDS-PAGE with an apparent molecular mass of 76 kDa and 66 kDa. Subsequently the 32-kDa protective protein was dissociated from the beta-galactosidase/protective protein complex, and purified. Antibodies raised against the dissociated inactive neuraminidase preparation specifically immunoprecipitate the active neuraminidase present in the complex with beta-galactosidase and protective protein. By immunoblotting evidence is provided that the 76-kDa protein is a subunit of neuraminidase which, in association with the 32-kDa protective protein, is essential for neuraminidase activity.  相似文献   

11.
Using calpastatin antibody we have identified a 145 kDa major band along with two relatively minor bands at 120 kDa and 110 kDa calpastatin molecules in bovine pulmonary artery smooth muscle mitochondria. To the best of our knowledge this is first report regarding the identification of calpastatin in mitochondria. We also demonstrated the presence of micro-calpain in the mitochondria by immunoblot and casein zymogram studies. Immunoblot studies identified two major bands corresponding to the 80 kDa large and the 28 kDa small subunit of mu-calpain. Additionally 76 kDa, 40 kDa and 18 kDa immunoreactive bands have also been detected. Purification and N-terminal amino acid sequence analysis of the identified proteins confirmed their identity as mu-calpain and calpastatins. Immunoprecipitation study revealed molecular association between mu-calpain and calpastatin in the mitochondria indicating that calpastatin could play an important role in preventing uncontrolled activity of mu-calpain which otherwise may facilitate pulmonary hypertension, smooth muscle proliferation and apoptosis.  相似文献   

12.
The protein involved in the conversion of arteannuin B to artemisinin has been purified from the leaves of Artemisia annua. The pure protein found to be homogenous on Native gel electrophoresis showed two major bands of 21 and 11 kDa on 12% SDS-PAGE. Molecular weight estimation of native protein indicated an apparent molecular mass of 66,000 Daltons. This protein is able to achieve 58% conversion. It has a K(m) of 0.5 mM for arteannuin B and a pH optima between 7.0-7.2. It is maximally active at 30 degrees C.  相似文献   

13.
Three isoforms of the alpha subunit of Na,K-ATPase, alpha 1, alpha 2, and alpha 3 have been characterized at the DNA, mRNA and protein levels. In admixtures, isoforms migrate as doublets (i.e. alpha 1 and another band originally designated alpha +, comprising alpha 2 + alpha 3) when analyzed by SDS-PAGE. As deduced from cDNA sequences their masses range from 111.7 to 112.6 kDa. With conventional protein standards, however, SDS-PAGE yields nominal masses of 85-105 kDa. In this system, the presence of a doublet that reacted with a polyclonal anti-Na,K-ATPase antibody in the kidney was interpreted as indicating two molecular or conformational species of the kidney alpha sub-unit (Siegel, G.J. and Desmond, T.J. (1989) J. Biol. Chem. 264, 4751-4754). We report that Na,K-ATPase purified from dog, guinea pig and rat kidney medulla or from rat brain, can yield two distinct bands when analyzed by SDS-PAGE or STS-PAGE, migrating between 85 and 105 kDa. An additional band migrating at 117 and 120 kDa appears often in enzyme purified from rat and guinea pig kidney medulla. The apparent molecular weights and relative intensities of these bands vary with temperature and duration of incubation during sample preparation. N-terminal sequencing and monospecific antibody probes revealed that the two distinct bands obtained from the kidney enzyme consist only of the alpha 1 isoform. The band appearing at 117-120 kDa also contains only the alpha 1 N-terminal sequence. In contrast, as reported earlier (Sweadner, K.J. (1979) J. Biol. Chem. 254, 6060-6067), the doublet seen in brain preparations consists of alpha 1 and alpha 2 or (alpha 2 + alpha 3). We conclude that monospecific antibody probes or N-terminal sequencing must be used to identify Na,K-ATPase isoforms by SDS- or STS-PAGE. In addition, gel conditions that may affect the mobilities of the isoforms are discussed.  相似文献   

14.
Y W Rong  P L Carl 《Biochemistry》1990,29(2):383-389
We have reinvestigated the molecular weight and subunit composition of calf thymus ribonuclease H1. Earlier studies suggested a variety of molecular weights for the enzyme in the range of 64K-84K and reported that the enzyme either was a single polypeptide of 74 kDa or consisted of from two to four subunits in the range of 21-34 kDa. Although we too find bands in this lower molecular weight range in our highly purified preparations following SDS-PAGE, our data suggest that the native structure of RNase H1 is a dimer of 68-kDa subunits. The evidence includes the following: (1) Western blot analysis of fractions taken at various stages of the purification indicates that the predominant antigenic form of the enzyme in crude extracts has a molecular weight of 68K but that during purification in the absence of sufficient protease inhibitors a variety of lower molecular weight forms appear concomitant with the disappearance of the 68-kDa band. (2) Activity gel analysis of the highly purified enzyme prepared in the presence of a battery of protease inhibitors reveals that the 68-kDa band (as well as several bands of lower molecular weight) possesses RNase H activity. (3) The 68-kDa band recognized by Western blotting with anti-RNase H immune sera is not detected by using preimmune sera. Furthermore, when immune sera are used, a trace of a 140-150-kDa antigenic form can sometimes be detected, consistent with the existence of a dimeric form of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In the preceding paper (Aiyer, R. A. (1983) J. Biol. Chem. 258, 14992-14999), the hydrodynamic properties of insulin receptors from turkey erythrocyte plasma membranes solubilized in nondenaturing detergents (Triton X-100 and sodium deoxycholate) were characterized. Two specific insulin-binding species are observed after velocity sedimentation in linear sucrose density gradients: peak II whose protein molecular weight (Mp) is 180,000 +/- 45,000 and its disulfide-linked dimer, peak I (Mp, 355,000 +/- 65,000). This paper describes the subunit composition of these species determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Insulin receptors were covalently attached to [125I]iodoinsulin with disuccinimidyl suberate. After solubilization in Triton X-100 or deoxycholate, peaks I and II were separated by sedimentation and subjected to SDS-PAGE; the constituent polypeptides were then identified by autoradiography. Under reducing conditions, both peaks I and II yield a major band of apparent molecular weight (Mapp) of 135,000; this band most likely represents the insulin-binding subunit (alpha). Minor bands of lower molecular weight are also seen whose significance is not entirely obvious. Under nonreducing conditions, peak I yields bands at Mapp = 230,000 and at greater than 240,000, while peak II yields bands at Mapp = 120,000 and 200,000. When these bands were cut out of the gel and subjected to SDS-PAGE following reduction with 10% beta-mercaptoethanol, all of them produced a single band that migrated with Mapp = 135,000. These results indicate that the alpha subunit is linked by disulfide bonds to at least one more subunit (beta). It is also apparent that the alpha subunit travels with higher mobility (Mapp = 120,000) under nonreducing conditions, suggesting the presence of intrachain disulfide bonds. Thus, peak II has a minimum subunit composition of alpha beta, where alpha is the insulin-binding subunit with a minimum Mr = 120,000-135,000 and beta has a minimum Mr = 80,000-90,000. And peak I, the disulfide-linked dimer of peak II, has a minimum subunit composition of alpha 2 beta 2. These results were further confirmed by cross-linking of protein subunits with glutaraldehyde, an (alpha, omega)-dialdehyde that reacts with amino groups. Within the limits of error, these molecular weights are in agreement with those estimated from the hydrodynamic properties of the detergent-solubilized, native receptor species reported in the preceding paper.  相似文献   

16.
The NADH-dependent glutamate synthase (EC 1.4.1.14) from the plant fraction of N2-fixing faba bean (Vicia faba) nodules has been purified 74-fold to a specific activity of about 3 μmol min−1 mg protein−1 with a final yield of 32%. The NADH-GOGAT activity was associated with a single form of the enzyme that behaved as a monomeric protein with a subunit molecular weight of 195 kDa and a native molecular weight from 222 to 236 kDa estimated by gel filtration or PAGE, respectively. The NADH-GOGAT band on SDS-PAGE was cut out and used to produce antibodies. Western blots of SDS-PAGE of crude nodule proteins revealed a 195 kDa polypeptide in root extracts but not in those of leaves or bacteroids. The antiserum also cross-reacted with a polypeptide of camparable molecular weight (195 kDa) from both amide and ureide transporting species legume nodules, indicating that some antigenic epitopes have been conserved between nodule NADH-GOGAT of different species.  相似文献   

17.
Two cysteine proteinase inhibitors, CPI-L and CPI-H, were purified from rabbit skeletal muscle by means of successive extraction with a neutral buffer solution, precipitation at pH 3.7, acetone fractionation and gel permeation on Sephadex G-75 and affinity chromatography on carboxymethyl-papain-Sepharose. The molecular mass of CPI-L was 13 kDa on gel permeation chromatography and SDS-PAGE under reducing conditions and was 15 kDa on SDS-PAGE under non-reducing conditions. The molecular mass of CPI-H was 23 kDa on gel permeation chromatography and it was converted to 13 kDa by SH-reducing agent. Although CPI-H showed single protein band with 13 kDa on SDS-PAGE under reducing conditions, it showed four protein bands with 21, 20, 15 and 13 kDa on SDS-PAGE under non-reducing conditions. Therefore, CPI-H was suggested to have a complicated subunit structure for which S-S bonds and some non-covalent bonds would be responsible. CPI-L and CPI-H were stable in the range of pH 3.0-9.5 and up to 80 degrees C. CPI-L and CPI-H were suggested to inhibit cathepsins B, H and L by a non-competitive mechanism. The inhibition constants (Ki) of CPI-L and CPI-H showed that both CPIs have much higher affinity against cathepsins H and L than against cathepsin B.  相似文献   

18.
Alcohol oxidase (AO) was extracted from the methylotrophic yeast Pichia putida and purified using various methods. AO purified by crystallization was homogeneous based on analytical centrifugation with subsequent gel filtration and SDS-PAGE. The molecular weight of the enzyme was around 600 kDa. SDS-PAGE revealed a single protein band (74 ± 4 kDa), and 8–9 bands of native protein with similar specific AO activities and substrate specificities were identified by PAGE without SDS. Electron microscopy of a single molecule revealed eight subunits located on the top of a regular tetragon with dotted symmetry of 422D4 providing evidence that AO consists of eight subunits. Apparently, each molecule of AO has two types of subunits with very similar molecular weights and differing from each other by the number of acidic and basic amino acid residues. Each subunit includes one molecule of FAD and 2–3 cysteine residues. The pH optimum was within 8.5–9.0. Specific activity of the enzyme varied from 10 to 50 μmol methanol/min per mg protein from batch to batch depending on separation methods and had linear relationship with protein concentration. The AO was quickly inactivated at 20°C and seemed to be stable in phosphate-citrate buffer with 30–50% (w/v) of sucrose. Different forms of 0.1–1 mm crystals of the enzyme were obtained. However the crystals did not yield X-ray reflections, apparently as a result of their molecular microheterogeneity.  相似文献   

19.
Separation of a commercial preparation of Chromobacterium viscosum by hydrophobic interaction chromatography yields two active fractions, one corresponding to a lipase of 33.0 ± 1.0 kDa by SDS-PAGE and the other to a high molecular weight aggregate (> 250 kDa) of the lipase with some impurities absorbing at 436 nm. Partial disaggregation of this complex occurs on gel filtration chromatography in the presence of 1% (w/v) CHAPS. On gel filtration under non reducing conditions the lipase behaves like a 17 kDa protein; in the presence of a strong denaturant and of a reducing agent a molecular size of 36 kDa is obtained, in accordance with SDS-PAGE results.  相似文献   

20.
Silica particles adsorbed several kinds of human serum proteins, especially 23 kDa molecular weight protein. After SDS-PAGE of adsorbed serum proteins, gel pieces containing 23 kDa protein was cut out and set in slot of stacking gel in second SDS-PAGE following overlay of Staphylococcus aureus V8 protease. After electrophoresis, gel was subjected to electroblotting onto polyvinylidene difluoride membrane. Both bands of dye-stained 23 kDa and the peptide were cut out from membrane and analyzed for amino acid sequence. Obtained sequences agreed well with amino terminal and intramolecular sequences of human HDL-apolipoprotein, A-I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号