首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutants Saccharomyces cerevisiae deleted on the trehalose-6-phosphate synthase gene (tps1) and their parental wild-type cells were submitted to hydrostatic pressure in the range of 0–200 MPa. Experimental evidence showed that viability for both strains decreased with increasing pressure and that tps1 mutants, unable to accumulate trehalose, were more sensitive to hydrostatic pressure than the wild-type cells. Additionally, both tps1 and wild-type cells in the stationary phase, when there is an accumulation of endogenous trehalose, were more resistant to pressure than proliferating cells. Under these conditions, mutant cells were also more sensitive to pressure treatment than the wild type. The present work also showed that mild pressure pretreatment did not induce hydrostatic pressure resistance (barotolerance) in yeast cells.  相似文献   

2.
压力对酵母菌及其海藻糖生成的影响   总被引:4,自引:0,他引:4  
酵母菌海藻糖是其在培养条件发生“恶劣”变化时生成的一种应激代谢产物。当压力在0.5.1.0MPa时,酵母菌海藻糖含量为6.5mg/g,较对照提高27%。确定压力提高酵母海藻糖的最适条件为:采用复合培养基,菌体前培养时间20h,压力1.0MPa、加压温度34℃,pH6.0,升降压速度为0.10MPa/min,加压培养3h,此时,酵母海藻糖含量达到11mg/g。  相似文献   

3.
The structural damage to and leakage of internal substances from Saccharomyces cerevisiae 0–39 cells induced by hydrostatic pressure were investigated. By scanning electron microscopy, yeast cells treated at room temperature with pressuresbellw 400 MPa for 10 min showed a slight alteration in outer shape. Transmission electron microscopy, however, showed that the inner structure of the cell began to be affected, especially the nuclear membrane, when treated with hydrostatic pressure around 100 MPa at room temperature for 10 min; at more than 400–600 MPa, further alterations appeared in the mitochondria and cytoplasm. Furthermore, when high pressure treatment was carried out at — 20° C, the inner structure of the cells was severely damaged even at 200 MPa, and almost all of the nuclear membrane disappeared, although the fluorescent nucleus in the cytoplasm was visible by 4,6-diamidino-2-phenylindole (DAPI) staining. The structural damage of pressure-treated cells was accompanied by the leakage of internal substances. The efflux of UV-absorbing substances including amino acid pools, peptides, and metal ions increased with increase in pressure up to 600 MPa. In particular, amounts of individual metal ion release varied with the magnitude of hydrostatic pressures over 300 MPa, which suggests that the ions can be removed from the yeast cells separately by hydrostatic pressure treatment. Correspondence to: S. Shimada  相似文献   

4.
5.
Gene expression patterns in response to hydrostatic pressure were determined by whole genome microarray hybridization. Functional classification of the 274 genes affected by pressure treatment of 200 MPa for 30 min revealed a stress response expression profile. The majority of the >2-fold upregulated genes were involved in stress defense and carbohydrate metabolism while most of the repressed ones were in cell cycle progression and protein synthesis categories. Furthermore, uncharacterized genes were among the 10 highest expressed sequences and represented 45% of the total upregulated genes. The results of this study revealed a hydrostatic pressure-specific stress response pattern and suggested interesting information about the mechanisms involved in adaptation of cells to a high-pressure environment.  相似文献   

6.
Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and Saccharomyces cerevisiae, mutants and wild-type strains to identify host-strain background and genetic modifications beneficial to xylose fermentation. Overexpression of the gene (XKS1) for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK) increased the ethanol yield by almost 85% and resulted in ethanol yields [0.61 C-mmol (C-mmol consumed xylulose)−1] that were close to the theoretical yield [0.67 C-mmol (C-mmol consumed xylulose)−1]. Likewise, deletion of gluconate 6-phosphate dehydrogenase (gnd1Δ) in the PPP and deletion of trehalose 6-phosphate synthase (tps1Δ) together with trehalose 6-phosphate phosphatase (tps2Δ) increased the ethanol yield by 30% and 20%, respectively. Strains deleted in the promoter of the phosphoglucose isomerase gene (PGI1) – resulting in reduced enzyme activities – increased the ethanol yield by 15%. Deletion of ribulose 5-phosphate (rpe1Δ) in the PPP abolished ethanol formation completely. Among non-transformed and parental strains S. cerevisiae ENY. WA-1A exhibited the highest ethanol yield, 0.47 C-mmol (C-mmol consumed xylulose)−1. Other non-transformed strains produced mainly arabinitol or xylitol from xylulose under anaerobic conditions. Contrary to previous reports S. cerevisiae T23D and CBS 8066 were not isogenic with respect to pentose metabolism. Whereas, CBS 8066 has been reported to have a high ethanol yield on xylulose, 0.46 C-mmol (C-mmol consumed xylulose)−1 (Yu et al. 1995), T23D only formed ethanol with a yield of 0.24 C-mmol (C-mmol consumed xylulose)−1. Strains producing arabinitol did not produce xylitol and vice versa. However, overexpression of XKS1 shifted polyol formation from xylitol to arabinitol. Received: 2 July 1999 / Accepted in revised form: 12 October 1999  相似文献   

7.
Effect of hydrostatic pressure on the mitochondrial ATP synthase   总被引:2,自引:0,他引:2  
The effects of hydrostatic pressure on three different preparations of mitochondrial H+-ATPase were investigated by studies of the hydrolytic activity, of the spectral shift and quantum yield of the intrinsic protein fluorescence, and of filtration chromatography. Both membrane-bound and detergent-solubilized forms of the mitochondrial F0-F1 complex were reversibly inactivated in the pressure range of 600-1800 bar, whereas with soluble F1-ATPase the inactivation was irreversible. Pressure inactivation of soluble F1-ATPase was facilitated by decreasing the protein concentration, indicating that dissociation is an important factor. In the presence of 30% glycerol, soluble F1-ATPase becomes inactivated by pressure in a reversible fashion, recovering the original activity. ATPase activity measured in an aqueous medium returns to the original values when incubated under high pressure in a glycerol-containing medium without substrate and is even enhanced when Mg-ATP is present. ATP hydrolysis returns to 80% of its original value in the case of the F0-F1 complex. Fluorescence studies under pressure revealed a red shift in the spectral distribution of the emission of tyrosine fluorescence of soluble F1-ATPase. A decrease in the quantum yield of intrinsic fluorescence was also observed upon subjection to pressure. The fluorescence intensity decreased monotonically as a function of pressure when the sample was in an aqueous medium, whereas it presented a biphasic behavior in a 30% glycerol medium. Gel filtration studies demonstrated that the hydrodynamic properties of the F1-ATPase are preserved if the enzyme is subjected to pressure in the presence of glycerol but they are modified when the same procedure is performed in an aqueous medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
Accumulation of intracellular allantoin and allantoate is mediated by two distinct active transport systems in Saccharomyces cerevisiae. Allantoin transport (DAL4 gene) is inducible, while allantoate uptake is constitutive (it occurs at full levels in the absence of any allantoate-related compounds from the culture medium). Both systems appear to be sensitive to nitrogen catabolite repression, feedback inhibition, and trans-inhibition. Mutants (dal5) that lack allantoate transport have been isolated. These strains also exhibit a 60% loss of allantoin transport capability. Conversely, dal4 mutants previously described are unable to transport allantoin and exhibit a 50% loss of allantoate transport. We interpret the pleiotropic behavior of the dal4 and dal5 mutations as deriving from a functional interaction between elements of the two transport systems.  相似文献   

10.
A novel, potent, semisynthetic pneumocandin, L-733,560, was used to isolate a resistant mutant in Saccharomyces cerevisiae. This compound, like other pneumocandins and echinocandins, inhibits 1,3-beta-D-glucan synthase from Candida albicans (F.A. Bouffard, R.A. Zambias, J. F. Dropinski, J.M. Balkovec, M.L. Hammond, G.K. Abruzzo, K.F. Bartizal, J.A. Marrinan, M. B. Kurtz, D.C. McFadden, K.H. Nollstadt, M.A. Powles, and D.M. Schmatz, J. Med. Chem. 37:222-225, 1994). Glucan synthesis catalyzed by a crude membrane fraction prepared from the S. cerevisiae mutant R560-1C was resistant to inhibition by L-733,560. The nearly 50-fold increase in the 50% inhibitory concentration against glucan synthase was commensurate with the increase in whole-cell resistance. R560-1C was cross-resistant to other inhibitors of C. albicans 1,3-beta-D-glucan synthase (aculeacin A, dihydropapulacandin, and others) but not to compounds with different modes of action. Genetic analysis revealed that enzyme and whole-cell pneumocandin resistance was due to a single mutant gene, designated etg1-1 (echinocandin target gene 1), which was semidominant in heterozygous diploids. The etg1-1 mutation did not confer enhanced ability to metabolize L-733,560 and had no effect on the membrane-bound enzymes chitin synthase I and squalene synthase. Alkali-soluble beta-glucan synthesized by crude microsomes from R560-1C was indistinguishable from the wild-type product. 1,3-beta-D-Glucan synthase activity from R560-1C was fractionated with NaCl and Tergitol NP-40; reconstitution with fractions from wild-type membranes revealed that drug resistance is associated with the insoluble membrane fraction. We propose that the etg1-1 mutant gene encodes a subunit of the 1,3-beta-D-glucan synthase complex.  相似文献   

11.
Iwahashi H  Odani M  Ishidou E  Kitagawa E 《FEBS letters》2005,579(13):2847-2852
Genome-wide mRNA expression profiles of Saccharomyces cerevisiae growing under hydrostatic pressure were characterized. We selected a hydrostatic pressure of 30 MPa at 25 degrees C because yeast cells were able to grow under these conditions, while cell size and complexity were increased after decompression. Functional characterization of pressure-induced genes suggests that genes involved in protein metabolism and membrane metabolism were induced. The response to 30 MPa was significantly different from that observed under lethal conditions because protein degradation was not activated under 30 MPa pressure. Strongly induced genes those that contribute to membrane metabolism and which are also induced by detergents, oils, and membrane stabilizers.  相似文献   

12.
The role of the storage carbohydrates trehalose and glycogen in the survival of aging Saccharomyces cerevisiae cells was studied. Culture aging for one week did not reduce cell viability. During this period, the cells accumulated the storage carbohydrates and raised the activity of the glycolytic enzymes hexokinase and phosphofructokinase. However, further aging led to a drastic drop in cell viability and to a decrease in the cellular content of trehalose and glycogen and in the activity of hexokinase and phosphofructokinase. The possible reasons for these changes are discussed.  相似文献   

13.
14.
The fermentation process offers a wide variety of stressors for yeast, such as temperature, aging, and ethanol. To evaluate a possible beneficial effect of trehalose on ethanol production, we used mutant strains of Saccharomyces cerevisiae possessing different deficiencies in the metabolism of this disaccharide: in synthesis, tps1; in transport, agt1; and in degradation, ath1 and nth1. According to our results, the tps1 mutant, the only strain tested unable to synthesize trehalose, showed the lowest fermentation yield, indicating that this sugar is important to improve ethanol production. At the end of the first fermentation cycle, only the strains deficient in transport and degradation maintained a significant level of the initial trehalose. The agt1, ath1, and nth1 strains showed the highest survival rates and the highest proportions of non-petites. Accumulation of petites during fermentation has been correlated to low ethanol production. When recycled back for a subsequent fermentation, those mutant strains produced the highest ethanol yields, suggesting that trehalose is required for improving fermentative capacity and longevity of yeasts, as well as their ability to withstand stressful industrial conditions. Finally, according to our results, the mechanism by which trehalose improves ethanol production seems to involve mainly protection against protein oxidation.  相似文献   

15.
The yeast gene RNA1 has been defined by the thermosensitive rna1-1 lesion. This lesion interferes with the processing and production of all major classes of RNA. Each class of RNA is affected at a distinct and presumably unrelated step. Furthermore, RNA does not appear to exit the nucleus. To investigate how the RNA1 gene product can pleiotropically affect disparate processes, we undertook a structural analysis of wild-type and mutant RNA1 genes. The wild-type gene was found to contain a 407-amino-acid open reading frame that encodes a hydrophilic protein. No clue regarding the function of the RNA1 protein was obtained by searching banks for similarity to other known gene products. Surprisingly, the rna1-1 lesion was found to code for two amino acid differences from wild type. We found that neither single-amino-acid change alone resulted in temperature sensitivity. The carboxy-terminal region of the RNA1 open reading frame contains a highly acidic domain extending from amino acids 334 to 400. We generated genomic deletions that removed C-terminal regions of this protein. Deletion of amino acids 397 to 407 did not appear to affect cell growth. Removal of amino acids 359 to 397, a region containing 24 acidic residues, caused temperature-sensitive growth. This allele, rna1-delta 359-397, defines a second conditional lesion of the RNA1 locus. We found that strains possessing the rna1-delta 359-397 allele did not show thermosensitive defects in pre-rRNA or pre-tRNA processing. Removal of amino acids 330 to 407 resulted in loss of viability.  相似文献   

16.
Nitric oxide (NO) is a simple and unique molecule that has diverse functions in organisms, including intracellular and intercellular messenger. The influence of NO on cell growth of Saccharomyces cerevisiae and as a signal molecule in stress response was evaluated. Respiring cells were more sensitive to an increase in intracellular NO concentration than fermentatively growing cells. Low levels of NO demonstrated a cytoprotective effect during stress from heat-shock or high hydrostatic pressure. Induction of NO synthase was isoform-specific and dependent on the metabolic state of the cells and the stress response pathway. These results support the hypothesis that an increase in intracellular NO concentration leads to stress protection.  相似文献   

17.
Trehalose, a storage sugar of baker's yeast, is known not to be metabolized when added to a cell suspension in water or a growth medium and to support growth only after a lag of about 10 h. However, it was transported into cells by at least two transport systems, the uptake being active, with a pH optimum at 5.5. There was no stoicheiometry with the shift of protons into cells observed at high trehalose concentrations. Trehalose remained intact in cells and was not appreciably lost to a trehalose-free medium. The uptake systems were present directly after growth on glucose, then decayed with a half-life of about 25 min but could be reactivated by aerobic incubation with trehalose, maltose, alpha-methyl-D-glucoside, glucose or ethanol. The uptake systems thus induced were different as revealed by competition experiments. At least one of the systems for trehalose uptake showed cooperative kinetics. Comparative anaysis with other disaccharides indicated the existence in Saccharomyces cerevisiae, after induction with trehalose, of at least four systems for the uptake of alpha-methyl-D-glucoside, four systems for maltose, together with the two for trehalose, variously shared by the sugars, the total of alpha-glucoside-transporting systems being five.  相似文献   

18.
The work was concerned with studying the balance of trehalose distribution between the rehydration medium and Saccharomyces cerevisiae cells grown in a chemically defined medium and dehydrated using the convective technique. A direct linear correlation between the viability of populations and the overall residual trehalose content in the cells and in the medium after the rehydration of dry yeast cells was shown to be most important. An inverse correlation was established between the viability of yeast cells and the amount of trehalose mobilised by the cells in the process of rehydration.  相似文献   

19.
The membrane fraction of exponentially growing cells of Saccharomyces cerevisiae was found to exhibit phosphatidylserine synthase activity. The enzyme was solubilized by Triton X-100 and chromatographed on a Sepharose 6B column. The enzyme had a pH optimum between 8.0 and 8.5. The apparent Km values for CDPdiacylglycerol and L-serine were 0.12 and 13 mM, respectively. Triton X-100 stimulated the enzyme. Mg2+ or Mn2+ was required for the activity. Ca2+ was inhibitory at relatively low concentrations. The enzyme was highly specific to L-serine. Labeling experiments showed that the enzyme synthesized phosphatidylserine by transferring the phosphatidyl moiety to L-serine. A mutant of S. cerevisiae defective in phosphatidylserine synthase was isolated. The strain required ethanolamine for its growth. Ethanolamine could be substituted by choline or high concentrations of L-serine. The mutant showed normal levels of CDPdiacylglycerol-inositol 3-phosphatidyltransferase and phosphatidylethanolamine methyltransferase activities.  相似文献   

20.
Exposure of the yeast Saccharomyces cerevisiae to hypertonic solutions of non-permeating compounds resulted in cell shrinkage, without plasmolysis. The relationship between cell volume and osmolality was non-linear; between 1 and 4 osM there was a plateau in cell volume, with apparently a resistance to further shrinkage; beyond 4 osM cell volume was reduced further. The loss of viability of S. cerevisiae after hypertonic stress was directly related to the reduction in cell volume in the shrunken state. The plasma membrane is often considered to be the primary site of osmotic injury, but on resuspension from a hypertonic stress, which would have resulted in a major loss of viability, all cells were osmotically responsive. The effects of osmotic stress on mitochondrial activity and structure were investigated using the fluorescent probe rhodamine 123. The patterns of rhodamine staining were altered only after extreme stress and are assumed to be a pathological feature rather than a primary cause of injury. Changes in the ultrastructure of the cell envelope were examined by freeze-fracture and scanning electron microscopy. In shrunken cells the wall increased in thickness, the outer surface remained unaltered, whilst the cytoplasmic side buckled with irregular projections into the cytoplasm. On return to isotonic solutions these structural alterations were reversible, suggesting a considerable degree of plasticity of the wall. However, the rate of enzyme digestion of the wall may have been modified, indicating that changes in wall structure persist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号