首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
本工作用静脉和脑内微量注射吗啡与纳洛酮,以及横断脑干等方法,分析了静脉内注射吗啡引起呼吸抑制效应的机制。实验在53只家兔上进行。结果观察到,在一侧脑桥结合臂旁内侧核区(NPBM)微量注射吗啡(20μg/2μl),可使双侧膈神经放电抑制,其抑制规律与静脉内注射吗啡(3mg/kg)的规律相似。当静脉注射吗啡造成呼吸抑制后,于一侧 NPBM 区微量注射纳洛酮(4μg/2μl)或横断脑干部分去除 NPBM,均可使膈神经放电产生脱抑制。横断脑干去除 NPBM 后,在长吸状态下吗啡呼吸抑制效应不易出现;如进一步在髓纹前方1—2mm处横断脑干,则静脉注射吗啡又能引起膈神经放电抑制。在一侧孤束核区(NTS)微量注射吗啡,可引起对侧膈神经放电抑制,而同侧不抑制。上述结果提示,静脉内注射吗啡引起的呼吸抑制效应,主要是通过 NPBM 活动改变而实现的,但 NTS 活动改变在其中也起一定作用;而“长吸中枢”的活动则阻碍吗啡呼吸抑制效应的出现。  相似文献   

2.
实验在49只局部麻醉、肌肉麻痹、切断双侧颈迷走神经的家兔上进行。观察到一侧孤束核(NTS)区微量注射氟安定,使对侧膈神经放电平均幅度减低,呼吸频率加快。事先在NTS区微量注射GABA 受体拮抗剂印防己毒素,可阻断氟安定的减低膈神经放电平均幅度的作用。在脑桥头端横断脑干出现长吸式呼吸的免上,一侧NTS区微量注射氟安定,也使对侧膈神经放电平均幅度减低,但呼吸频率减慢。在脑桥结合臂旁内侧核(NPBM)区微量注射氟安定,使呼吸频率明显减慢,吸气和呼气时程延长,这效应可被毒扁豆碱阻断。脊髓蛛网膜下腔注射氟安定,使膈神经放电平均幅度减低,血压下降,这效应可被印防己毒素阻断。结果提示,NPBM 的存在与呼吸频率加快有关;而氟安定作用于NPBM区,却减慢呼吸频率,其机制可能是抗胆碱能作用。氟安定直接作用于NTS 区或脊髓使膈神经放电平均幅度减低、血压下降,其机制可能与激活GABA 受体有关。  相似文献   

3.
实验在62只家兔上进行。结果观察到,中缝大核(NRM)区562个单位中,有118个单位的自发放电频率低,放电比较规则,动作电位时程长,易被微电泳5-羟色胺所阻遏,称为A 组单位。其余444个单位的自发放电频率高,动作电位时程短,称为B 组单位。大多数 B组单位对微电泳5-羟色胺不起反应。脑桥臂旁内侧核(NPBM)区微量注射吗啡(200μg/2μl)或静脉注射吗啡(3mg/kg)后,20个A 组单位中有19个发生兴奋效应,而49个B 组单位中仅有29个发生兴奋效应,而且A组单位发生兴奋的程度也比B组单位的高。这些结果提示,NRM区的A 组单位可能是5-羟色胺神经元,吗啡对这些神经元有相对选择性的兴奋作用。 在另外11只家兔上,应用辣根过氧化物酶(HRP)逆行追踪技术观察到,NPBM 区与NRM 区有纤维联系。 本实验结果提示,静脉注射吗啡所致的呼吸抑制,可能与吗啡作用于 NPBM,通过纤维联系,引起NRM 5-羟色胺神经元兴奋有关。  相似文献   

4.
聂琳  刘磊 《生理学报》1993,45(1):96-101
实验在24只家兔身上观察了微量注射吗啡、纳洛酮于杏仁中央核(ACE)中心区对膈神经放电的影响,同时监测动脉血压,主要结果如下:(1)ACE中心区微量注射m吗啡,不同动物出现两种不同的呼吸效应,一为吸气时程延长,膈神经放电积分幅值升高;二为膈神经放电积分幅值下降,呼吸时程无明显变化。(2)ACE中心区微量注射纳洛酮,呼吸频率增加,积分幅值升高,吸气时程缩短。(3)预先注射纳洛酮,可阻断吗啡在ACE中心区的吸气延长效应,而对其它的呼吸指标不产生影响。提示:ACE神经元上可能存在有内源性吗啡受体,内源性吗啡通过其受体可对呼吸产生影响。  相似文献   

5.
实验在20只麻醉、切断双侧颈迷走神经、减压神经和窦神经的家兔上进行。细胞外记录延髓腹侧的单位放电活动。在110个单位中42个对吸入6%CO_2 有反应,其中32个表现为兴奋,10个表现为抑制。这些对CO_2敏感的单位中,30个(71%)分布在头端和尾端化学敏感区,27个位于腹侧表面下0—500μm的深度内。在78个单位中观察了对阻断腹主动脉血流所引起血压升高的反应,有15个单位表现为兴奋,8个单位表现为抑制。这些血压敏感单位中17个分布在中间区,13个位于腹侧表面下0—500μm。7个对夹前后肢有反应的单位中,同时对CO_2或血压升高敏感的单位各一个。结果表明,家兔延髓腹侧存在对CO_2敏感及血压敏感的神经元,半数以上的神经元集中在浅层;两类神经元的分布具有区域差异(P<0.01)。  相似文献   

6.
黄武新  刘传缋 《生理学报》1985,37(2):191-198
在乌拉坦氯醛糖混合麻醉猫上,平静呼吸时膈神经和肋间外神经α纤维单纤维放电时程、冲动数、冲动频率及休止期经统计处理无明显差别。切断双侧迷走神经后呼吸深慢,两种神经的冲动频率升高、放电时程延长及冲动数增多。窒息时两种神经电活动先增强,然后同时停止活动。索曼0.2—3μg 椎动脉或10—20μg/kg 静脉注射后,主要抑制膈神经放电的占85%和87%,无主要抑制肋间外神经的反应。椎动脉注射吗啡0.5—5mg,主要抑制肋间外神经放电的反应则占58%,无抑制膈神经放电的反应。从膈神经元所在的颈髓局部浸润索曼不能停止膈神经节律吸气放电。以上结果表明,主要支配膈神经的延髓呼吸神经元背侧组(DRG)和主要支配肋间外神经的腹侧组(VRG)在平静呼吸时活动无明显差异。而索曼和吗啡可使这两个细胞核团表现不同的反应。  相似文献   

7.
家兔面神经后核内侧区在呼吸节律起源中的作用   总被引:36,自引:8,他引:28  
从腹侧面暴露家兔延髓,脑内微量注射1%普鲁卡因阻滞面神经后核内侧区(mNRF),全部动物(n=20)一次注射(0.3—1.0μl)后即能可逆地消除呼吸节律。区域对照显示此区非常局限,范围约1.0×1.0×1.0mm。组织学检查表明为面神经后核内侧区。本文分析了 mNRF的呼吸相关神经元(RRNs)的放电形式。在 mNRF 有较多的呼气(E)神经元和呼气-吸气跨时相(E-IPS)神经元。在阻滞 mNRF 引起呼吸停止期间,观察到低位延髓背侧呼吸群(DRG)和腹侧呼吸群(VRG)尾端区 RRNs 放电的节律性消失,表现连续放电或停止放电。电刺激DRG,VRG 尾端区,只能诱发短串的膈神经放电,而不能产生节律性发放。说明这些区域的RRNs 无自动节律性活动的能力。结果表明,面神经后核内侧区与呼吸节律发生有关,它可能是呼吸节律发生器的一个重要的所在部位。  相似文献   

8.
实验在66只麻醉、制动,断双侧颈迷走神经和人工通气的家兔上进行。通过微量注射神经元胞体兴奋剂谷氨酸钠和神经元胞体抑制剂甘氨酸,改变孤束核腹外侧区神经元兴奋活动,探讨对下丘脑弓状核诱发电位的影响及其可能的机制和意义。实验结果如下:(1)孤束核腹外侧区微量注射谷氨酸钠,可使膈神经放电显著增加和使弓状核诱发电位P2及N2波幅显著降低;而微量注射甘氨酸则使膈神经放电显著减少和使弓状核诱发电位P2及N2波幅显著增大。(2)静脉注射纳洛酮对谷氨酸钠引起的膈神经放电兴奋效应无明显影响,但能翻转谷氨酸钠对弓状核诱发电位P2及N2波幅的抑制效应。提示:孤束核腹外侧区呼吸神经元的兴奋活动可扩散至弓状核,并对弓状核诱发电位产生影响,此影响可能是由内源性阿片系统参与而实现的。  相似文献   

9.
刘诗翔  魏书均 《生理学报》1995,47(4):343-348
实验在66只麻醉、制动,断双侧颈迷走神经和人工通气的家兔上进行。通过微量注射神经元胞体兴奋剂谷氨酸钠和神经元胞体抑制剂甘氨酸,改变孤束核腹外侧区神经元兴奋活动,探讨对下丘脑弓状核诱发电位的影响及其可能的机制和意义。实验结果如下:(1)孤束核腹外侧区微量注射谷氨酸钠,可使膈神经放电显著增加和使弓状核诱发电位P2及N2波幅显著降低;而微量注射甘氨酸则使膈神经放电显著减少和使弓状核诱发电位P2及N2波幅  相似文献   

10.
家免63只,用乌拉坦(700mg/kg)和氯醛醣(35mg/kg)静脉麻醉,三碘季铵酚制动,在人工呼吸下进行实验。用电刺激下丘脑近中线区的方法诱发定性期前收缩(HVE)。双侧延髓腹侧区内微量注射吗啡(5μg 溶于0.5—1μl 中)可抑制 HVE。在双侧延髓腹侧区微量注射纳洛酬(2μg 溶于0.5—1μl 中)能阻断电刺激中缝核尾端或中缝核尾端内微量注射 L-谷氨酸钠(50mmol/L,0.5—1μl)对 HVE 的抑制效应,也能减少或消除刺激腓深神经对 HVE 的抑制作用。上述结果提示,延髓腹侧部阿片受体的激活可抑制 HVE;另外,腓深神经传入冲动也可能通过中缝核尾端激活延髓腹侧区的阿片受体而抑制 HVE。  相似文献   

11.
实验在33只浅麻醉、肌肉麻痹、人工呼吸及切断双侧颈迷走神经的家兔上进行。观察中缝大核区电解损毁或微量注射利多卡因对呼吸活动及臂旁内侧核区微量注射吗啡所致呼吸抑制效应的影响。结果是:电解损毀中缝大核区,使呼吸频率增加,膈神经放电的幅度和频率均无明显变化,而臂旁内侧核区微量注射吗啡抑制呼吸的程度减轻;中缝大核区微量注射利多卡因,则部分消除臂旁内侧核区微量注射吗啡的呼吸抑制效应。中缝大核旁网状结构电解损毁或微量注射利多卡因,不影响吗啡的呼吸抑制效应。上述结果提示,中缝大核区可能在脑桥臂旁内侧核区微量注射吗啡抑制呼吸的机制中起一定作用。  相似文献   

12.
We hypothesized that rhythmic respiratory-related activity could be generated in pons independent of medullary mechanisms. In decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats, we recorded efferent activities of the phrenic nerve and mylohyoid branch of the trigeminal nerve. Following transections of the brain stem at the pontomedullary junction, the phrenic and trigeminal nerves discharged with independent rhythms. Spontaneous trigeminal discharges eventually ceased but were reestablished after strychnine, doxapram, and/or protriptyline were administered. In some animals having no spontaneous trigeminal discharges after transection, these discharges appeared, with a rhythm different from the phrenic, following administration of these agents. In other cats having no transections between pons and medulla, these pharmacological agents induced trigeminal and phrenic discharges after kainic acid had been injected into the entire dorsal and ventral medullary respiratory nuclei. Phrenic and trigeminal discharges were linked, indicating survival of bulbospinal neurons or presence of pontospinal units. We conclude that rhythms, similar to respiratory rhythm, can occur by mechanisms in isolated pons. Such mechanisms are hypothesized to be within the pneumotaxic center and may underlie the neurogenesis of eupnea.  相似文献   

13.
These studies investigated the role of the intermediate area of the ventral surface of the medulla (VMS) in the tracheal constriction produced by hypercapnia. Experiments were performed in chloralose-anesthetized, paralyzed, and artificially ventilated cats. Airway responses were assessed from pressure changes in a bypassed segment of the rostral cervical trachea. Hyperoxic hypercapnia increased tracheal pressure and phrenic nerve activity. Intravenous atropine pretreatment or vagotomy abolished the changes in tracheal pressure without affecting phrenic nerve discharge. Rapid cooling of the intermediate area reversed the tracheal constriction produced by hypercapnia. Graded cooling produced a progressive reduction in the changes in maximal tracheal pressure and phrenic nerve discharge responses caused by hypercapnia. Cooling the intermediate area to 20 degrees C significantly elevated the CO2 thresholds of both responses. These findings demonstrate that structures near the intermediate area of the VMS play a role in the neural cholinergic responses of the tracheal segment to CO2. It is possible that neurons or fibers in intermediate area influence the motor nuclei innervating the trachea. Alternatively, airway tone may be linked to respiratory motor activity so that medullary interventions that influence respiratory motor activity also alter bronchomotor tone.  相似文献   

14.
We hypothesized that a discrete medullary locus, critical for gasping neurogenesis, could be identified. In decerebrate, cerebellectomized, vagotomized, paralyzed, and ventilated cats, activities of phrenic, hypoglossal, and recurrent laryngeal nerves were monitored. Gasping was induced by freezing the brain stem, via a fork thermode, at the pontomedullary junction. By reversible cooling of the medulla, chemical lesions with kainic acid, and radio-frequency lesions, a critical area for gasping neurogenesis was localized bilaterally 2-3 mm rostral to obex, 2.0-2.5 mm lateral to midline, and 3-4 mm ventral to medullary surface. Electrical stimulation in this area elicited premature gasps, whereas unilateral lesions or lidocaine injections eliminated gasping activities in all nerves. These procedures did not cause similar changes during eupnea. In apneusis, however, lidocaine injections markedly altered the pattern or caused apnea. We conclude that discharge of neurons in a discrete portion of the lateral tegmental field of medulla is required for gasping neurogenesis. Our results are consistent with these neurons comprising the central pattern generator for gasping.  相似文献   

15.
The purpose was to evaluate activities of medullary respiratory neurons during equivalent changes in phrenic discharge resulting from hypercapnia and hypoxia. Decerebrate, cerebellectomized, paralyzed, and ventilated cats were used. Vagi were sectioned at left midcervical and right intrathoracic levels caudal to the origin of right recurrent laryngeal nerve. Activities of phrenic nerve and single respiratory neurons were monitored. Neurons exhibiting antidromic action potentials following stimulations of the spinal cord and recurrent laryngeal nerve were designated, respectively, bulbospinal or laryngeal. The remaining neurons were not antidromically activated. Hypercapnia caused significant augmentations of discharge frequencies for all neuronal groups. Many of these neurons had no change or declines of activity in hypoxia. We conclude that central chemoreceptor afferent influences are ubiquitous, but excitatory influences from carotid chemoreceptors are more limited in distribution among medullary respiratory neurons. Hypoxia will increase activities of neurons that receive sufficient excitatory peripheral chemoreceptor afferents to overcome direct depression by brain stem hypoxia. The possibility that responses of respiratory muscles to hypoxia are programmed within the medulla is discussed.  相似文献   

16.
The heart rate, blood pressure, and respiratory response to topically applied cyanide on the ventrolateral medullary surface and upper spinal cord was studied on exteriorized sinaortic-denervated fetal lambs under pentobarbital anesthesia. On all sites tested cyanide produced a rapid increase in heart rate and blood pressure (P smaller than 0.05) which was most pronounced from the area adjacent to the nerve roots IX to XI (mean 32%). Respiratory efforts consisting of 1-8 gasps were induced in half the applications to the medulla but never when the pledgets were applied to the spinal cord. The mean delay to response was 43 s (range 13-102 s). After cautery of the chemosensitive areas, topical application of cyanide failed to stimulate gasping, whereas intravenous cyanide or cord clamping still produced a vigorous respiratory response. It is concluded that sympathetic stimulation of the heart and blood vessels can originate centrally in response to local histotoxic hypoxia of the ventral medulla and upper spinal cord. Furthermore, it is proposed that in the apneic fetus histotoxic hypoxia of the medulla initiates respiration possibly by stimulating a special gasping mechanism which is separate from the respiratory center responsible for rhythmic breathing after birth. The responsible neurons must be located at least 2 mm beneath the ventral medullary surface.  相似文献   

17.
Studies in cats have shown that, in addition to respiratory neuron groups in the dorsomedial (DRG) and ventrolateral (VRG) medulla, neural structures in the most ventral medullary regions are important for the maintenance of respiratory rhythm. The purpose of this study was to determine whether a similar superficially located ventral region was present in the dog and to assess the role of each of the other regions in the canine medulla important in the control of breathing, in 20 anesthetized, vagotomized, and artificially ventilated dogs, a cryoprobe was used to cool selected regions of the medulla to 15-20 degrees C. Respiratory output was determined from phrenic nerve or diaphragm electrical activity. Cooling in or near the nucleus of the solitary tract altered timing and produced little change in the amplitude or rate of rise of inspiratory activity; lengthening of inspiratory time was the most common timing effect observed. Cooling in ventrolateral regions affected the amplitude and rate of rise of respiratory activity. Depression of neural tidal volume and apnea could be produced by unilateral cooling in two ventrolateral regions: 1) near the nucleus ambiguus and nucleus para-ambiguus and 2) just beneath the ventral medullary surface. These findings indicate that in the dog dorsomedial neural structures influence respiratory timing, whereas more ventral structures are important to respiratory drive.  相似文献   

18.
Morphine is often used in cancer pain and postoperative analgesic management but induces respiratory depression. Therefore, there is an ongoing search for drug candidates that can antagonize morphine-induced respiratory depression but have no effect on morphine-induced analgesia. Acetylcholine is an excitatory neurotransmitter in central respiratory control and physostigmine antagonizes morphine-induced respiratory depression. However, physostigmine has not been applied in clinical practice because it has a short action time, among other characteristics. We therefore asked whether donepezil (a long-acting acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease) can antagonize morphine-induced respiratory depression. Using the anesthetized rabbit as our model, we measured phrenic nerve discharge as an index of respiratory rate and amplitude. We compared control indices with discharges after the injection of morphine and after the injection of donepezil. Morphine-induced depression of respiratory rate and respiratory amplitude was partly antagonized by donepezil without any effect on blood pressure and end-tidal C02. In the other experiment, apneic threshold PaC02 was also compared. Morphine increased the phrenic nerve apnea threshold but this was antagonized by donepezil. These findings indicate that systemically administered donepezil partially restores morphine-induced respiratory depression and morphine-deteriorated phrenic nerve apnea threshold in the anesthetized rabbit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号