首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Growth cone motility.   总被引:4,自引:0,他引:4  
The exact nature of growth cone motility is far from understood but progress has been made in several areas. It now appears that growth cones pull and not push; we will review the biophysical basis of growth cone movement. Current ideas on the regulation of growth cone motility and the relationship between motility and axon pathfinding are also discussed.  相似文献   

2.
Regulation of growth cone motility.   总被引:3,自引:0,他引:3  
  相似文献   

3.
Nerve growth cone motility   总被引:1,自引:0,他引:1  
Although many issues remain unresolved, the past year has witnessed a number of advances in our understanding of the inter-relationships between extracellular influences, cell phenotype, growth associated proteins, second messengers, and cytoskeletal components in the control of neurite outgrowth and growth cone behavior. Some of the early events associated with process initiation have been tentatively identified, and more is known about the assembly and stabilization of the microtubular framework of growing neurites. The mechanical forces involved in neurite extension have begun to be quantified, and interactions between the actin and microtubule systems are being further characterized. The current data more strongly support a functional role for GAP-43 in control of motility. The data also tend to support a central role for cytoplasmic calcium in mediating the actions of many growth-regulating influences, and strongly implicate changes in actin filament stability as mediating the behavioral effects of calcium.  相似文献   

4.
Since cytoplasmic Ca2+ levels are reported to regulate neurite elongation, we tested whether calcium-activated kinases might be necessary for growth cone motility and neurite elongation in explant cultures of goldfish retina. Kinase inhibitors and activators were locally applied by micropipette to retinal growth cones and the responses were observed via phase-contrast videomicroscopy. In some cases, growth rates were also quantifed over several hours after general application in the medium. The selective inhibitors of protein kinase C, calphostin C (0.1–1 μM) and chelerythrin (up to 50 μM), caused no obvious changes in growth cones or neurite elongation, and activators of PKC (phorbols, arachidonic acid, and diacylglycerol) also were generally without effects, although phorbols slowed the growth rate. Inhibitors of protein kinase A and tyrosine kinases also produced no obvious effects. The calmodulin antagonists, calmidazolium (0.1 μM), trifluoperazine (100 μM), and CGS9343B (50 μM), however, caused a reversible growth cone arrest with loss of filopodia and lamellipodia. The growth cone became a club-shaped swelling which sometimes moved a short distance back the shaft, leaving evacuated filaments at points of strong filopodial attachments. A similar reversible growth cone arrest occurred with the general kinase inhibitors: H7 at 200 but not at 100 μM, and staurosporine at 100 but not 10 nM, suggesting possible involvement of a calmodulin-dependent kinase (camK) rather than PKC. The selective inhibitor of camKII, KN-62 (tested up to 50 μM), produced no effects but the specific myosin light-chain kinase (MLCK) inhibitors ML-7 (3–5 μM) and ML-9 (5–10 μM) reversibly reproduced the effect, suggesting that MLCK rather than camKII is necessary for growth cone motility. The MLCK inhibitors' effects both on growth cone morphology and on F-actin filaments (rhodamine-phalloidin staining) were similar to those caused by cytochalasin D (5 μM), and are discussed in light of findings that inhibiting MLCK disrupts actin filaments in astrocytes and fibroblasts. 1994 John Wiley & Sons, Inc.  相似文献   

5.
Myosin light chain phosphorylation and growth cone motility   总被引:8,自引:0,他引:8  
According to the treadmill hypothesis, the rate of growth cone advance depends upon the difference between the rates of protrusion (powered by actin polymerization at the leading edge) and retrograde F-actin flow, powered by activated myosin. Myosin II, a strong candidate for powering the retrograde flow, is activated by myosin light chain (MLC) phosphorylation. Earlier results showing that pharmacological inhibition of myosin light chain kinase (MLCK) causes growth cone collapse with loss of F-actin-based structures are seemingly inconsistent with the treadmill hypothesis, which predicts faster growth cone advance. These experiments re-examine this issue using an inhibitory pseudosubstrate peptide taken from the MLCK sequence and coupled to the fatty acid stearate to allow it to cross the membrane. At 5-25 microM, the peptide completely collapsed growth cones from goldfish retina with a progressive loss of lamellipodia and then filopodia, as seen with pharmacological inhibitors, but fully reversible. Lower concentrations (2.5 microM) both simplified the growth cone (fewer filopodia) and caused faster advance, doubling growth rates for many axons (51-102 microm/h; p <.025). Rhodamine-phalloidin staining showed reduced F-actin content in the faster growing growth cones, and marked reductions in collapsed ones. At higher concentrations, there was a transient advance of individual filopodia before collapse (also seen with the general myosin inhibitor, butanedione monoxime, which did not accelerate growth). The rho/rho kinase pathway modulates MLC dephosphorylation by myosin-bound protein phosphatase 1 (MPP1), and manipulations of MPP1 also altered motility. Lysophosphatidic acid (10 microM), which causes inhibition of MPP1 to accumulate activated myosin II, caused a contracted collapse (vs. that due to loss of F-actin) but was ineffective after treatment with low doses of peptide, demonstrating that the peptide acts via MLC phosphorylation. Inhibiting rho kinase with Y27632 (100 microM) to disinhibit the phosphatase increased the growth rate like the MLCK peptide, as expected. These results suggest that: varying the level of MLCK activity inversely affects the rate of growth cone advance, consistent with the treadmill hypothesis and myosin II powering of retrograde F-actin flow; MLCK activity in growth cones, as in fibroblasts, contributes strongly to controlling the amount of F-actin; and the phosphatase is already highly active in these cultures, because rho kinase inhibition produces much smaller effects on growth than does MLCK inhibition.  相似文献   

6.
Motile growth cones lead growing axons through developing tissues to synaptic targets. These behaviors depend on the organization and dynamics of actin filaments that fill the growth cone leading margin [peripheral (P‐) domain]. Actin filament organization in growth cones is regulated by actin‐binding proteins that control all aspects of filament assembly, turnover, interactions with other filaments and cytoplasmic components, and participation in producing mechanical forces. Actin filament polymerization drives protrusion of sensory filopodia and lamellipodia, and actin filament connections to the plasma membrane link the filament network to adhesive contacts of filopodia and lamellipodia with other surfaces. These contacts stabilize protrusions and transduce mechanical forces generated by actomyosin activity into traction that pulls an elongating axon along the path toward its target. Adhesive ligands and extrinsic guidance cues bind growth cone receptors and trigger signaling activities involving Rho GTPases, kinases, phosphatases, cyclic nucleotides, and [Ca++] fluxes. These signals regulate actin‐binding proteins to locally modulate actin polymerization, interactions, and force transduction to steer the growth cone leading margin toward the sources of attractive cues and away from repellent guidance cues.

  相似文献   


7.
It is becoming increasingly evident that proteins of the actin depolymerizing factor (ADF)/cofilin family are essential regulators of actin turnover required for many actin-based cellular processes, including motility. ADF can increase actin turnover by either increasing the rate of actin filament treadmilling or by severing actin filaments. In neurons ADF is highly expressed in neuronal growth cones and its activity is regulated by many signals that affect growth cone motility. In addition, increased activity of ADF causes an increase in neurite extension. ADF activity is inhibited upon phosphorylation by LIM kinases (LIMK), kinases activated by members of the Rho family of small GTPases. ADF become dephosphorylated downstream of signal pathways that activate PI-3 kinase or increase levels of intracellular calcium. The growth-regulating effects of ADF together with its ability to be regulated by a wide variety of guidance cues, suggest that ADF may regulate growth cone advance and navigation.  相似文献   

8.
The accessibility and simplicity of the zebrafish embryo have allowed researchers to make a detailed characterization of pathfinding by identifiable growth cones. The growth cones follow precise cell-specific pathways to their targets. Analyses of pathfinding in mutant and experimentally manipulated wild type embryos have shown that growth cones accomplish this by interacting with specific cellular cues in their environment, many of which are likely to be redundant.  相似文献   

9.
The neurotransmitters serotonin and dopamine inhibit growth cone motility and neurite elongation of specific identified neurons of the pond snail Helisoma. Similarly, experimentally evoked action potentials inhibit motility of these growth cones. Here we explore the possibility that the motility- and elongation-inhibiting actions of serotonin and dopamine derive from the electrophysiological responses of the respective neurons. Evidence of three types in support of this hypothesis is presented: (1) Only those identified neurons for which motility is inhibited by serotonin or dopamine respond to the transmitter with sustained electrical excitation. (2) The magnitude of the electrical excitation response correlates with the degree of inhibition of growth cone motility. (3) The injection of hyperpolarizing current enables motility to continue as in the absence of transmitters. We conclude that membrane voltage is an important level of control of growth cone motility, at which neurotransmitters exert a regulatory influence.  相似文献   

10.
SPIN90 is an F-actin binding protein thought to play important roles in regulating cytoskeletal dynamics. It is known that SPIN90 is expressed during the early stages of neuronal development, but details of its localization and function in growth cones have not been fully investigated. Our immunocytochemical data show that SPIN90 is enriched throughout growth cones and neuronal shafts in young hippocampal neurons. We also found that its localization correlates with and depends upon the presence of F-actin. Detailed observation of primary cultures of hippocampal neurons revealed that SPIN90 knockout reduces both growth cone areas and in the numbers of filopodia, as compared to wild-type neurons. In addition, total neurite length, the combined lengths of the longest (axonal) and shorter (dendritic) neurites, was smaller in SPIN90 knockout neurons than wild-type neurons. Finally, Cdc42 activity was down-regulated in SPIN90 knockout neurons. Taken together, our findings suggest that SPIN90 plays critical roles in controlling growth cone dynamics and neurite outgrowth.  相似文献   

11.
Cytoskeletal dynamics and transport in growth cone motility and axon guidance   总被引:20,自引:0,他引:20  
Dent EW  Gertler FB 《Neuron》2003,40(2):209-227
Recent studies indicate the actin and microtubule cytoskeletons are a final common target of many signaling cascades that influence the developing neuron. Regulation of polymer dynamics and transport are crucial for the proper growth cone motility. This review addresses how actin filaments, microtubules, and their associated proteins play crucial roles in growth cone motility, axon outgrowth, and guidance. We present a working model for cytoskeletal regulation of directed axon outgrowth. An important goal for the future will be to understand the coordinated response of the cytoskeleton to signaling cascades induced by guidance receptor activation.  相似文献   

12.
The neurotransmitter acetylcholine (ACh) is expressed in the developing telencephalon at the time when thalamic axons project to the cortex, long before synapses are being formed. Since previous studies demonstrated an influence of ACh on neurite extension we used different in vitro assays to examine possible effects of ACh on the growth of thalamic axons. In explant cultures, application of ACh reduced the length of thalamic axons in a dose dependent manner, an effect that could also be evoked by selective muscarinic and nicotinic agonists. Time-lapse imaging of thalamic axons exposed to microscopic gradients of ACh revealed that growth cones no longer advanced, but maintained high filopodial activity. This growth cone pausing was not accompanied by axon retraction or growth cone collapse. It could at least partially be blocked by muscarinic and nicotinic antagonists, indicating that both types of ACh receptors contribute to mediate these effects on thalamic axons. Finally, we also found that ACh changed the morphology of growth cones; they became larger and extended more filopodia. Since such changes in the structure and motility of growth cones are observed at decision regions along the path of many fiber populations including thalamic axons, we suggest that ACh plays a role during the elaboration of thalamocortical projections.Key words: cortical development, thalamocortical projections, neurotransmitter, acetylcholine, growth cone, axonal guidance, wiring molecules  相似文献   

13.
Immunocytochemistry and in vitro studies have suggested that the ERM (ezrin-radixin-moesin) protein, radixin, may have a role in nerve growth cone motility. We tested the in situ role of radixin in chick dorsal root ganglion growth cones by observing the effects of its localized and acute inactivation. Microscale chromophore-assisted laser inactivation (micro-CALI) of radixin in growth cones causes a 30% reduction of lamellipodial area within the irradiated region whereas all control treatments did not affect lamellipodia. Micro-CALI of radixin targeted to the middle of the leading edge often split growth cones to form two smaller growth cones during continued forward movement (>80%). These findings suggest a critical role for radixin in growth cone lamellipodia that is similar to ezrin function in pseudopodia of transformed fibroblasts. They are consistent with radixin linking actin filaments to each other or to the membrane during motility.  相似文献   

14.
Graded distributions of ephrin ligands are involved in the formation of topographic maps. However, it is still poorly understood how growth cones read gradients of membrane-bound guidance molecules. We used microcontact printing to produce discontinuous gradients of substrate-bound ephrinA5. These consist of submicron-sized protein-covered spots, which vary with respect to their sizes and spacings. Growth cones of chick temporal retinal axons are able to integrate these discontinuous ephrin distributions and stop at a distinct zone in the gradient while still undergoing filopodial activity. The position of this stop zone depends on both the steepness of the gradient and on the amount of substrate-bound ephrin per unit surface area. Quantitative analysis of axon outgrowth shows that the stop reaction is controlled by a combination of the local ephrin concentration and the total amount of encountered ephrin, but cannot be attributed to one of these parameters alone.  相似文献   

15.
Phosphatidylinositol-3-kinase (PI-3K) has been reported to affect neurite outgrowth both in vivo and in vitro. Here we investigated the signaling pathways by which PI-3K affects neurite outgrowth and growth cone motility in identified snail neurons in vitro. Inhibition of PI-3K with wortmannin (2 microM) or LY 294002 (25 microM) resulted in a significant elongation of filopodia and in a slow-down of neurite outgrowth. Experiments using cytochalasin and blebbistatin, drugs that interfere with actin polymerization and myosin II activity, respectively, demonstrated that filopodial elongation resulting from PI-3K inhibition was dependent on actin polymerization. Inhibition of strategic kinases located downstream of PI-3K, such as Akt, ROCK, and MEK, also caused significant filopodial elongation and a slow-down in neurite outgrowth. Another growth cone parameter, filopodial number, was not affected by inhibition of PI-3K, Akt, ROCK, or MEK. A detailed study of growth cone behavior showed that the filopodial elongation induced by inhibiting PI-3K, Akt, ROCK, and MEK was achieved by increasing two motility parameters: the rate with which filopodia extend (extension rate) and the time that filopodia spend elongating. Whereas the inhibition of ROCK or Akt (both activated by the lipid kinase activity of PI-3K) and MEK (activated by the protein kinase activity of PI-3K) had additive effects, simultaneous inhibition of Akt and ROCK showed no additive effect. We further demonstrate that the effects on filopodial dynamics investigated were calcium-independent. Taken together, our results suggest that inhibition of PI-3K signaling results in filopodial elongation and a slow-down of neurite advance, reminiscent of growth cone searching behavior.  相似文献   

16.
The growth cone contains dynamic and relatively stable microtubule populations, whose function in motility and axonal growth is uncharacterized. We have used vinblastine at low doses to inhibit microtubule dynamics without appreciable depolymerization to probe the role of these dynamics in growth cone behavior. At doses of vinblastine that interfere only with dynamics, the forward and persistent movement of the growth cone is inhibited and the growth cone wanders without appreciable forward translocation; it quickly resumes forward growth after the vinblastine is washed out. Direct visualization of fluorescently tagged microtubules in these neurons shows that in the absence of dynamic microtubules, the remaining mass of polymer does not invade the peripheral lamella and does not undergo the usual cycle of bundling and splaying and the growth cone stops forward movement. These experiments argue for a role for dynamic microtubules in allowing microtubule rearrangements in the growth cone. These rearrangements seem to be necessary for microtubule bundling, the subsequent coalescence of the cortex around the bundle to form new axon, and forward translocation of the growth cone.  相似文献   

17.
During neuronal pathfinding in vivo, growth cones must reorient their direction of migration in response to extracellular guidance cues. The developing grasshopper limb bud has proved to be a model system in which to examine mechanisms of growth cone guidance and motility in vivo. In this review we examine the contributions of adhesion and multiple guidance cues (semaphorins 1 and 2) in directing a growth cone steering event. Recent observations have suggested that the tibial pioneer growth cones are not directed via mechanisms of differential adhesivity. We present a model of growth cone steering that suggests a combination of adhesive and guidance receptors are important for a correct steering event and that guidance molecules may be important regulators of adhesive interactions with the actin cytoskeleton.  相似文献   

18.
The role of myosins in Xenopus retinal ganglion cell growth cone motility in the optic tract was studied using two pharmacologic inhibitors with different specificities. 2,3-Butanedione monoxime (BDM) disrupts myosin—actin interactions of all myosins, and ML-7 specifically inhibits activation of myosin II. Both inhibitors caused growth cones to assume a collapsed morphology and decreased growth cone speed. Similar effects were observed in vitro. Interestingly, the effects of the two inhibitors, while similar, were clearly distinguishable, raising the possibility that different myosins may have different functional roles in growth cone motility. BDM caused growth cones to withdraw lamellipodia and some filopodia and eventually to freeze, whereas ML-7 caused total collapse and retraction. Concentrations of BDM and ML-7 that had no effect when applied independently stopped growth cones when applied simultaneously, suggesting that these inhibitors act synergistically on myosin function, thus providing evidence of specificity. These results imply that normal growth cone motility in the molecularly and spatially complex environment of the living brain requires myosin function. © 1997 John Wiley & Sons, Inc. J Neurobiol 32: 567–578, 1997  相似文献   

19.
20.
Ectoplacental cones of mouse embryos collected on day 8 of pregnancy were grafted into the dorsal subcutaneous tissue of host mice. The grafts were collected between days 3 and 8 after transfer and processed for light and electron microscope morphological analysis as well as for cytochemistry of nonspecific alkaline phosphatase. Fragments of normal mouse placentas collected between days 12 and 18 of pregnancy were processed similarly. About 37% of the grafts were nonhemorrhagic nodules formed by different kinds of trophoblastic cells. These cells had many morphological and cytochemical features of cells present in normal mouse placentas. Nonphagocytic giant cells, glycogen cells, as well as cells with a well-developed granular endoplasmic reticulum were similar to cells found in the placenta and were always present in the grafts. Cells showing features intermediate between the above-mentioned cells and those whose cytoplasm was poor in organelles also were found in the grafts. The latter resembled cells of layer 1 of the labyrinth of the placenta. These results suggest that trophoblastic cells of the ectoplacental cones had differentiated into placental cells following their transfer to the subcutaneous tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号