首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The alpha1,3/4 fucosyltransferase (FucT) enzyme from Helicobacter pylori catalyzes fucose transfer from donor GDP-beta-l-fucose to the GlcNAc group of two series of acceptor substrates in H. pylori lipopolysaccharide: betaGal1,3betaGlcNAc (Type I) or betaGal1,4betaGlcNAc (Type II). Fucose is added either in alpha1,3 linkage of Type II acceptor to produce Lewis X or in alpha1,4 linkage of Type I acceptor to produce Lewis A, respectively. H. pylori FucTs from different strains have distinct Type I or Type II substrate specificities. FucT in H. pylori strain NCTC11639 has an exclusive alpha1,3 activity because it recognizes only Type II substrates, whereas FucT in H. pylori strain UA948 can utilize both Type II and Type I acceptors; thus it has both alpha1,3 and alpha1,4 activity, respectively. To identify elements conferring substrate specificity, 12 chimeric FucTs were constructed by domain swapping between 11639FucT and UA948FucT and characterized for their ability to transfer fucose to Type I and Type II acceptors. Our results indicate that the C-terminal region of H. pylori FucTs controls Type I and Type II acceptor specificity. In particular, the highly divergent C-terminal portion, seven amino acids DNPFIFC at positions 347-353 in 11639FucT, and the corresponding 10 amino acids CNDAHYSALH at positions 345-354 in UA948FucT, controls the Type I and Type II acceptor recognition. This is the opposite of mammalian FucTs where acceptor preference is determined primarily by the N-terminal residues in the hypervariable stem domain.  相似文献   

2.
The minimal catalytic domain of alpha-(1,3/1,4)-fucosyltransferases (FucTs) from Helicobacter pylori strains NCTC11639 and UA948 was mapped by N- and C-terminal truncations. Only the C terminus could be truncated without significant loss of activity. 11639FucT and UA948FucT contain 10 and 8 heptad repeats, respectively, which connect the catalytic domain with the C-terminal putative amphipathic alpha-helices. Deletion of all heptad repeats almost completely abolished enzyme activity. Nevertheless, with only one heptad repeat 11639FucT is fully active, whereas UA948FucT is partially active. Removal of the two putative amphipathic alpha-helices dramatically increased protein expression and solubility, enabling purification with yields of milligrams/liter. Steady-state kinetic analysis of the purified FucTs showed that 11639FucTs possessed slightly tighter binding affinity for both Type II acceptor and GDP-fucose donor than UA948FucT, and its kcat of 2.3 s(-1) was double that of UA948FucT, which had a kcat value of 1.1 s(-1) for both Type II and Type I acceptors. UA948FucT strongly favors Type II over the Type I acceptor with a 20-fold difference in acceptor Km. Sixteen modified Type I and Type II series acceptors were employed to map the molecular determinants of acceptors required for recognition by H. pylori alpha-(1,3/1,4)-FucTs. Deoxygenation at 6-C of the galactose in Type II acceptor caused a 5000-fold decrease in alpha1,3 activity, whereas in Type I acceptor this completely abolished alpha1,4 activity, indicating that this hydroxyl group is a key polar group.  相似文献   

3.
Fucosyltransferases (FucT) from different Helicobacter pylori strains display distinct Type I (Galbeta1,3GlcNAc) or Type II (Galbeta1,4GlcNAc) substrate specificity. FucT from strain UA948 can transfer fucose to the OH-3 of Type II acceptors as well as to the OH-4 of Type I acceptors on the GlcNAc moiety, so it has both alpha1,3 and alpha1,4 activities. In contrast, FucT from strain NCTC11639 has exclusive alpha1,3 activity. Our domain swapping study (Ma, B., Wang, G., Palcic, M. M., Hazes, B., and Taylor, D. E. (2003) J. Biol. Chem. 278, 21893-21900) demonstrated that exchange of the hypervariable loops, (347)DNPFIFC(353) in 11639FucT and (345)CNDAHYSALH(354) in UA948FucT, were sufficient to either confer or abolish alpha1,4 activity. Here we performed alanine scanning site-directed mutagenesis to identify which amino acids within (345)CNDAHYSALH(354) of UA948FucT confer Type I substrate specificity. The Tyr(350) --> Ala mutation dramatically reduced alpha1,4 activity without lowering alpha1,3 activity. None of the other alanine substitutions selectively eliminated alpha1,4 activity. To elucidate how Tyr(350) determines alpha1,4 specificity, mutants Tyr(350) --> Phe, Tyr(350) --> Trp, and Tyr(350) --> Gly were constructed in UA948FucT. These mutations did not decrease alpha1,3 activity but reduced the alpha1,4 activity to 66.9, 55.6, and 3.1% [corrected] of wild type level, respectively. Apparently the aromatic nature, but not the hydroxyl group of Tyr(350), is essential for alpha1,4 activity. Our data demonstrate that a single amino acid (Tyr(350)) in the C-terminal hypervariable region of UA948FucT determines Type I acceptor specificity. Notably, a single aromatic residue (Trp) has also been implicated in controlling Type I acceptor preference for human FucT III, but it is located in an N-terminal hypervariable stem domain.  相似文献   

4.
5.
The identification of Helicobacter pylori isolates that expresses exclusively type I Lewis antigens is necessary to determine the biosynthetic pathway of these antigens. Fast-atom bombardment MS provides evidence that the H. pylori isolate UA1111 expresses predominantly Leb, with H type I and Lea in lesser amounts. Cloning and expression of the H. pylori fucosyltransferases (FucTs) allow comparisons with previously identified H. pylori enzymes and determination of the enzyme specificities. Although all FucTs, one alpha(1,2) FucT and two alpha(1,3/4) FucTs, appear to be functional in this isolate, their activities are lower and enzyme specificities are different to other H. pylori FucTs previously characterized. Studies of the cloned enzyme activities and mutational analysis indicate that Lea acts as the substrate for the synthesis of Leb. This is different from the human Leb biosynthetic pathway, but analogous to the biosynthetic pathway utilized by H. pylori for the production of Ley.  相似文献   

6.
Rabbani S  Miksa V  Wipf B  Ernst B 《Glycobiology》2005,15(11):1076-1083
Helicobacter pylori is an important human pathogen which causes both gastric and duodenal ulcers and is associated with gastric cancer and lymphoma. This microorganism synthesizes fucosylated oligosaccharides, predominantly the Galb-1,4GlcNAc (Type II) blood group antigens Lewis X and Y, whereas a small population also expresses the Galb-1,3GlcNAc (Type I) blood group antigens Lewis A and B. These carbohydrate structures are known to mimic host cell antigens and permit the bacteria to escape from the host immune response. Here, we report the cloning and characterization of a novel H. pylori alpha-1,4 fucosyltransferase (FucT). In contrast to the family members characterized to date, this enzyme shows exclusively Type I acceptor substrate specificity. The enzyme consisting of 432 amino acids (MW 50,502 Da) was cloned using a polymerase chain reaction (PCR)-based approach. It exhibits a high degree of identity (75-87%) and similar structural features, for example, in the heptamer repeat pattern, with other H. pylori FucTs. The kinetic characterization revealed a very efficient transferase (k(cat)/Km = 229 mM(-1) s(-1)) for the Type I acceptor substrate (Gal)-1,3 GlcNAc-Lem (1). Additionally, the enzyme possesses a broad tolerance toward nonnatural Type I acceptor substrate analogs and therefore represents a valuable tool for the chemoenzymatic synthesis of Lewis A, sialyl Lewis A as well as mimetics thereof.  相似文献   

7.
Transgalactosylation of chitobiose and chitotriose employing -galactosidase from bovine testes yielded mixtures with 1-3 linked galactose (type I) and 1-4 linked galactose (type II) in a final ratio of 1:1 for the tri- and 1:1.4 for the tetrasaccharide. After 24 h incubations of the two purified oligosaccharide mixtures with large amounts (20-fold increase compared with standard conditions) of human 1, 3/4-fucosyltransferase III (FucT III), the type I tri-/tetrasaccharides were completely converted to the Lewisa structure, whereas approximately 10% fucosylation of the type II isomers to the Lewisx oligosaccharides was observed in long-term incubations.Employing large amounts of human 1, 3-fucosyltransferase VI (FucT VI), the type I trisaccharide substrate was exclusively fucosylated at the proximal O-4 substituted N-acetylglucosamine (GlcNAc) (20%) whereas almost all of the type II isomers was converted to the corresponding Lewisx product. 45% of the type I tetrasaccharide was fucosylated at the second GlcNAc solely by FucT VI. The type II isomer was almost completely 1-3 fucosylated to yield the Lewisx derivative with traces of a structure that contained an additional fucose at the reducing GlcNAc. The results obtained in the present study employing high amounts of enzyme confirmed our previous results that FucT III acts preponderantly as a 1-4 fucosyltransferase onto GlcNAc in vitro. Human FucT VI attaches fucose exclusively in an 1-3 linkage to 4-substituted GlcNAc in vitro and does not modify any 3-substituted GlcNAc to yield Lewisa oligosaccharides. With 8-methoxycarbonyloctyl glycoside acceptors used under standard conditions, FucT III acts exclusively on the type I and FucT VI only on the type II derivative. With lacto-N-tetraose, lacto-N-fucopentraose I, or LS-tetrasaccharide as substrates, FucT III modified the 3-substituted GlcNAc and the reducing glucose; FucT VI recognized only lacto-N-neotetraose as a substrate.  相似文献   

8.
The O-antigen chain from the lipopolysaccharide of Helicobacter pylori strain UA861 was determined to be composed of an elongated type 2 N - acetyllactosamine backbone, -[-->3)-beta-D-Gal-(1-->4)-beta-D-GlcNAc-(1- ]n-->, with approximately half of the GlcNAc units carrying a terminal alpha-d-Glc residue at the O -6 position. The O-chain of H.pylori UA861 was terminated by a N -acetyllactosamine [beta-D-Gal-(1-->4)-beta-D- GlcNAc] (LacNAc) epitope and did not express terminal Lewis X or Lewis Y blood-group determinants as previously found in other H.pylori strains. The absence of terminal Lewis X and Lewis Y blood-group epitopes and the replacement of Fuc by Glc as a side chain in the O- chain of H.pylori UA861 represents yet another type of lipopolysaccharide structure from H.pylori species. These structural differences in H.pylori lipopolysaccharide molecules carry implications with regard to possible different pathogenic events between strains and respective hosts.   相似文献   

9.
The lipopolysaccharides (LPS) of most Helicobacter pylori strains contain complex carbohydrates known as Lewis antigens that are structurally related to the human blood group antigens. Investigations on the genetic determinants involved in the biosynthesis of Lewis antigens have led to the identification of the fucosyltransferases of H. pylori, which have substrate specificities distinct from the mammalian fucosyltransferases. Compared with its human host, H. pylori utilizes a different pathway to synthesize the difucosylated Lewis antigens, Lewis y. and Lewis b. Unique features in the H. pylori fucosyltransferase genes, including homopolymeric tracts mediating slipped-strand mispairing and the elements regulating translational frameshifting, enable H. pylori to produce variable LPS epitopes on its surface. These new findings have provided us with a basis to further examine the roles of molecular mimicry and phase variation of H. pylori Lewis antigen expression in both persistent infection and pathogenesis of this important human gastric pathogen.  相似文献   

10.
11.
Glycoconjugate-bound fucose, abundant in the parasite Schistosoma mansoni, has been found in the form of Fucalpha1,3GlcNAc, Fucalpha1,2Fuc, Fucalpha1,6GlcNAc, and perhaps Fucalpha1,4GlcNAc linkages. Here we quantify fucosyltransferase activities in three developmental stages of S. mansoni. Assays were performed using fluorophore-assisted carbohydrate electrophoresis with detection of radioactive fucose incorporation from GDP-[(14)C]-fucose into structurally defined acceptors. The total fucosyltransferase-specific activity in egg extracts was 50-fold higher than that in the other life stages tested (cercaria and adult worms). A fucosyltransferase was detected that transferred fucose to type-2 oligosaccharides (Galbeta1,4GlcNAc-R), both sialylated (with the sialic acid attached to the terminal Gal by alpha2,3 or 2,6 linkage) and nonsialylated. Another fucosyltransferase was identified that transferred fucose to lactose-based and type-2 fucosylated oligosaccharides, such as LNFIII (Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,3Galbeta1,4Glc). A low level of fucosyltransferase that transfers fucose to no-sialylated type-1 oligosaccharides (Galbeta1,3GlcNAc-R) was also detected. These studies revealed multifucosylated products of the reactions. In addition, the effects of fucose-type iminosugars inhibitors were tested on schistosome fucosyltransferases. A new fucose-type 1-N-iminosugar was four- to sixfold more potent as an inhibitor of schistosome fucosyltransferases in vitro than was deoxyfuconojirimycin. In vivo, this novel 1-iminosugar blocked the expression of a fucosylated epitope (mAb 128C3/3 antigen) that is associated with the pathogenesis of schistosomiasis.  相似文献   

12.
Helicobacter pylori is a Gram-negative gastric pathogen causing diseases from mild gastric infections to gastric cancer. The difference in clinical outcome has been suggested to be due to strain differences. H. pylori undergoes phase variation by changing its lipopolysaccharide structure according to the environmental conditions. The O-antigen of H. pylori contains fucosylated glycans, similar to Lewis structures found in human gastric epithelium. These Lewis glycans of H. pylori have been suggested to play a role in pathogenesis in the adhesion of the bacterium to gastric epithelium. In the synthesis of fucosylated structures, GDP-l-fucose is needed as a fucose donor. Here, we cloned the two key enzymes of GDP-l-fucose synthesis, H. pylori gmd coding for GDP-d-mannose dehydratase (GMD), and gmer coding for GDP-4-keto-6-deoxy-d-mannose-3,5-epimerase/4-reductase (GMER) and expressed them in an enzymatically active form in Saccharomyces cerevisiae. The end product of these enzymes, GDP-l-fucose was used as a fucose donor in a fucosyltransferase assay converting sialyl-N-acetyllactosamine to sialyl Lewis X.  相似文献   

13.
Two mutants of the BW5147 mouse lymphoma cell line have been selected for their resistance to the toxic effects of pea lectin. These cell lines, termed PLR1.3 and PHAR1.8 PLR7.2, have a decreased number of high affinity pea lectin-binding sites (Trowbridge, I.S., Hyman, R., Ferson, T., and Mazauskas, C. (1978) Eur. J. Immunol. 8, 716-723). Intact cell labeling experiments using [2-3H]mannose indicated that PLR1.3 cells have a block in the conversion of GDP-[3H]mannose to GDP-[3H]fucose whereas PHAR1.8 PLR7.2 cells appear to be blocked in the transfer of fucose from GDP-[3H]fucose to glycoprotein acceptors. In vitro experiments with extracts of PLR1.3 cells confirmed the failure to convert GDP-mannose to GDP-fucose and indicated that the defect is in GDP-mannose 4,6-dehydratase (EC 4.2.1.47), the first enzyme in the conversion of GDP-mannose to GDP-fucose. The block in the PLR1.3 cells could be bypassed by growing the cells in the presence of fucose, demonstrating that an alternate pathway for the production of GDP-fucose presumably via fucose 1-phosphate is functional in this line. PLR1.3 cells grown in 10 mM fucose showed normal high affinity pea lectin binding. PHRA1.8 PLR7.2 cells synthesize GDP-fucose and have normal or increased levels of GDP-fucose:glycoprotein fucosyltransferase when assayed in vitro. The fucosyltransferases of this clone can utilize its own glycoproteins as fucose acceptors in in vitro assays. These findings indicate that this cell line fails to carry out the fucosyltransferase reaction in vivo despite the fact that it possesses the appropriate nucleotide sugar, glycoprotein acceptors, and fucosyltransferase. The finding of decreased glycoprotein fucose in two independent isolates of pea lectin-resistant cell lines and the restoration of high affinity pea lectin binding to PLR1.3 cells following fucose feeding strongly implicates fucose as a major determinant of pea lectin binding.  相似文献   

14.
A GDP-fucose:GM1 alpha1-->2 fucosyltransferase (FucT) is induced during early stages of chemical hepatocarcinogenesis in parenchymal cells of Fischer 344 rats fed a diet supplemented with 0.03% N-2-acetylaminofluorene (AAF). This enzyme is undetectable in normal rat liver tissues but is highly expressed in many rat hepatoma cell lines, including rat hepatoma H35 cells. Enzymatic properties and acceptor specificity of native rat hepatoma H35 cell alpha1-->2FucT, expressed recombinant full-length H35 cell alpha1-->2FucT, and a truncated form missing the first 27 amino acid residues from the N-terminus, comprising the cytoplasmic and transmembrane domains of the enzyme, were studied. The results indicate that the recombinant full-length enzyme has a specific activity over 80-fold higher than the truncated enzyme. Both the native and recombinant full-length enzymes display significant activity in the absence of detergent or phospholipid and optimal activity in the presence of Triton CF-54 detergent. The truncated enzyme is optimally activated by CHAPSO, showing little activity in its absence. These findings are in agreement with previous studies demonstrating a requirement of a lipidic environment for optimal activity with this enzyme and suggest that the N-terminal transmembrane domain is important either in the maintenance of an active conformation or in allowing efficient interaction with acceptor glycolipids. Both the full-length and truncated enzymes transfer fucose not only to GM1 and asialo-GM1 (Gg4) but also to galactosyl globoside (Gb5) as well. Weak or undetectable transfer to lacto- and neolacto-series acceptors was observed, demonstrating a strong preference for terminal Galbeta1-->3GalNAc- structures. The structures of two reaction products generated by expressed recombinant full-length alpha1-->2FucT, which are known to be important tumor-associated antigens (fucosyl-GM1 and fucosyl-Gb5), were unambiguously confirmed by 1H-NMR spectral analysis.  相似文献   

15.
Ma B  Simala-Grant JL  Taylor DE 《Glycobiology》2006,16(12):158R-184R
Fucosylated carbohydrate structures are involved in a variety of biological and pathological processes in eukaryotic organisms including tissue development, angiogenesis, fertilization, cell adhesion, inflammation, and tumor metastasis. In contrast, fucosylation appears less common in prokaryotic organisms and has been suggested to be involved in molecular mimicry, adhesion, colonization, and modulating the host immune response. Fucosyltransferases (FucTs), present in both eukaryotic and prokaryotic organisms, are the enzymes responsible for the catalysis of fucose transfer from donor guanosine-diphosphate fucose to various acceptor molecules including oligosaccharides, glycoproteins, and glycolipids. To date, several subfamilies of mammalian FucTs have been well characterized; these enzymes are therefore delineated and used as models. Non-mammalian FucTs that possess different domain construction or display distinctive acceptor substrate specificity are highlighted. It is noteworthy that the glycoconjugates from plants and schistosomes contain some unusual fucose linkages, suggesting the presence of novel FucT subfamilies as yet to be characterized. Despite the very low sequence homology, striking functional similarity is exhibited between mammalian and Helicobacter pylori alpha1,3/4 FucTs, implying that these enzymes likely share a conserved mechanistic and structural basis for fucose transfer; such conserved functional features might also exist when comparing other FucT subfamilies from different origins. Fucosyltranferases are promising tools used in synthesis of fucosylated oligosaccharides and glycoconjugates, which show great potential in the treatment of infectious and inflammatory diseases and tumor metastasis.  相似文献   

16.
In the search for the biochemical basis of the control of glycosylation of cell surface carbohydrates, revertant clones were isolated from previously characterized wheat germ agglutinin-resistant clones of B16 mouse melanoma cells by selection for resistance to Lotus tetragonolobus lectin or to ricin. Comparison of the wheat germ agglutinin-resistant clones with the parent and revertant clones indicated that this phenotype was correlated with an increased sensitivity to the Lotus lectin, a 60- to 70-fold increase in alpha 1 leads to 3 fucosyltransferase activity and a decreased sialic acid content of the N-glycosidic chains of glycoproteins. The results suggest a novel type of control mechanism for lectin resistance, an increase in a glycosyltransferase activity. The presence of alpha 1 leads to 3 bound fucose on N-acetylglucosamine residues would interfere with the addition of sialic acid by alpha 2 leads to 3 linkages to galactose residues in the carbohydrate units, and this change could explain the resistance to wheat germ agglutinin and the increased sensitivity to the Lotus lectin. A change in a regulatory gene for the fucosyltransferase as a possible primary cause for the changed phenotype is discussed.  相似文献   

17.
The alpha3 fucosyltransferase, FucT-VII, is one of the key glycosyltransferases involved in the biosynthesis of the sialyl Lewis X (sLex) antigen on human leukocytes. The sialyl Lewis X antigen (NeuAcalpha(2-3)Galbeta(1-4)[Fucalpha(1-3)]GlcNAc-R) is an essential component of the recruitment of leukocytes to sites of inflammation, mediating the primary interaction between circulating leukocytes and activated endothelium. In order to characterize the enzymatic properties of the leukocyte alpha3 fucosyltransferase FucT-VII, the enzyme has been expressed in Trichoplusia ni insect cells. The enzyme is capable of synthesizing both sLexand sialyl-dimeric-Lexstructures in vitro , from 3'-sialyl-lacNAc and VIM-2 structures, respectively, with only low levels of fucose transfer observed to neutral or 3'-sulfated acceptors. Studies using fucosylated NeuAcalpha(2-3)-(Galbeta(1- 4)GlcNAc)3-Me acceptors demonstrate that FucT-VII is able to synthesize both di-fucosylated and tri-fucosylated structures from mono- fucosylated precursors, but preferentially fucosylates the distal GlcNAc within a polylactosamine chain. Furthermore, the rate of fucosylation of the internal GlcNAc residues is reduced once fucose has been added to the distal GlcNAc. These results indicate that FucT-VII is capable of generating complex selectin ligands, in vitro , however the order of fucose addition to the lactosamine chain affects the rate of selectin ligand synthesis.   相似文献   

18.
GDP-fucose:xyloglucan (XG) fucosyltransferase from growing Pisum epicotyl tissue was solubilized in detergent and used to examine the capacity of intact XG from Tamarindus seeds, and its partial hydrolysis products, to act as fucose acceptors with GDP-[14C]fucose as donor. Native seed XG (Mr greater than 10(6) Da) was partially depolymerized by incubation with Trichoderma cellulase for various periods of time. Cellulase was inactivated and reaction mixtures were incubated with GDP-[14C]fucose plus solubilized pea fucosyltransferase and then fractionated on columns of Sepharose CL-6B or Bio-Gel P4. Specific activities (Bq/microgram carbohydrate) of fragments with Mr ranging from 10(6) to 10(4) Da were constant throughout the size ranges, indicating that all stretches of the XG chains were available for fucosylation. More complete cellulase hydrolysis yielded subunit oligosaccharides that chromatographed in a cluster of hepta-, octa-, and nonasaccharides, none of which acted as fucosyl acceptors when incubated with pea fucosyltransferase. However, a substantial amount (up to half of hydrolysate) of larger transient oligosaccharides was also formed with a size equivalent to three of the oligosaccharide subunits. Octasaccharide subunits in this trimer were readily fucosylated. This fucosyltransfer was inhibited by uncombined (free) subunit oligosaccharides, which implies that the latter could bind to the transferase and displace at least part of the trimer, even though they could not themselves be fucosylated. Reduction of the trimer oligosaccharide with NaB3H4, followed by further hydrolysis with cellulase, resulted in tritiated nonasaccharide and unlabeled octasaccharide in a concentration ratio of 1:2. The tamarind XG trimer which accepts fucose is therefore composed mainly of the subunit sequence: octa-octa-nonasaccharide (reducing). One of the terminal oligosaccharide subunits in this trimer, probably the nonasaccharide, appears to be required as a recognition (binding) site in fucosyltransferase in order for adjacent octasaccharide(s) to be fucosylated by the active (catalytic) enzyme site.  相似文献   

19.
The pathway for synthesis of three glycosphingolipids bearing a common sialyl-Lex determinant (NeuAc alpha 2----3Gal beta 1----4[Fuc alpha 1----3]GlcNac beta 1----R) from their type 2 lactoseries precursors has been studied using the 0.2% Triton X-100-soluble fraction from human lung carcinoma PC9 cells. Two enzymes were found to be required for their synthesis: (i) an alpha 1----3 fucosyltransferase, the properties of which have been characterized as being similar to the enzyme from human small cell lung carcinoma NCI-H69 cells (Holmes, E. H., Ostrander, G. K., and Hakomori, S. (1985) J. Biol. Chem. 260, 7619-7627); and (ii) an alpha 2----3 sialyltransferase that was efficiently solubilized by 0.2% Triton X-100 and required divalent metal ions and 0.3% Triton CF-54 for optimal activity at pH 5.9 in cacodylate buffer. Biosynthesis of the sialyl-Lex determinant was shown to proceed via sialylation of nLc6 and nLc4, followed by alpha 1----3 fucosylation at the penultimate GlcNAc residues, based on the following: (i) transfer of NeuAc by PC9 cell sialyltransferase was found only when the nonfucosylated acceptors nLc4 and nLc6 were added, and none of the glycolipids with Lex structure (III3FucnLc4; V3FucnLc6; III3V3Fuc2nLc6) were sialylated; and (ii) the PC9 cell fucosyltransferase was active with both neutral and ganglioside neolacto (type 2 chain) acceptors. Transfer of fucose to VI3NeuAcnLc6 yielded mono- and difucosyl derivatives, whereas only a monofucosyl derivative was obtained when VI6NeuAcnLc6 was the acceptor. This is most probably due to different conformations at the terminus of the two acceptor gangliosides. The fucosyltransferase was incapable of transferring fucose to sialyl 2----3 lactotetraosylceramide (IV3NeuAcLc4).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号